Version Control with Subversion

For Subversion 1.6

(Compiled from r6067)

Ben Collins-Sussman
Brian W. Fitzpatrick
C. Michael Pilato

Version Control with Subversion: For Subversion 1.6: (Compiled from r6067)
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michadl Pilato

Publication date (TBA)
Copyright © 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael

Pilato

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by/2.0/

Table of Contents

o (= Yo (o TSP PPTT R PPPPTP Xi
£ TP TPPPRTTRPPPPIN Xiii
WHEE IS SUDVEISIONT? ...t ettt e ettt e et et e et et r e et et e e e e ena e e eenans Xiii
IS SUbVErSION the RIGNE TOOI? ...ttt e e et e e e ene s Xiii
SUDVEISION'S HISLOMY ... eeveieiiitt ettt ettt ettt e et e et et e e ettt e e et et e e et et e e e e eba s Xiv
SUDVEISION'S ATCRITECTUIE ...ttt ettt e et e e et et e e et e e e e e et e e e e era s Xiv
SUDVEISION'S COMPONENES ... ettt ettt e et e et e et e e e et e et et e et et s e et e et e et e et e et e e r e et e ear e et et e e e e et e e e eennn s Xvi
WHEL'S NEW IN SUDVEISION ...ttt ettt ettt e et e et et e e e et e e e eaa e e eenans XVi
LU (o 1= g Tor PP PPPPTRRPPPPTT Xvii
HOW 10 REA THIS BOOK ...ttt et ettt e ettt e ettt e e ettt r e et e rb e e e eentnaeeeens Xviii
Organization Of THIS BOOKcooiuiiiiiii e ettt e e e e e b Xviii
THIS BOOK 18 IO ...ttt ettt ettt et e e et e e e et e ab e e e e rb e e e enaas XX
ACKNOWIEAGMENTS ...ttt ettt e ettt ettt et e e et e et et e e et e e e e et e e r e et et n e e e et r e e e et e e ennans XX
1. FUNCAMENEEI CONCEPLS ... eeeett ettt e ettt ettt e ettt e e ettt e ettt oo et et e e et et h e e ettt b e e et e b b e e et e b b e e e et bb e e et e bb e et e bt e e eeeranes 1
VErSION CONIOI BASICS ...ceeviiiiiti ettt e e e e et e e et et e e et et e e et et e e e e et e e e e ebaas 1
LT R E 010 1 (o] Y TP PPPPPT 1

THE WOTKING COPY .. eeeitiieeeeii ettt ettt e ettt e e ettt e et ettt e e et e bt e e et et e e e e eebaneeeenbnnaeeenes 2
VErSIONING IMOOEIS ...ttt et e et et et e et e e e e et a et e et e e e e nna e e enaan 2
Version Control the SUDVEISION WEYiiiiiiii ettt e ettt e et e e et e e eeba e eeenes 7
SUDVEISION REPOSITONES ...ttt ettt ettt ettt e e et e et et e et et e et et e et et e e e eba s 7
REVISIONS ...ttt ettt e e et e e e e e e 7
AdAressing the REDOSITONYueieiitieeeeit ettt ettt e et et e ettt e e et ett e e et eet e e e eett e e e eebb s eeeenenaeeenn 8
SUDVEISION WOPKING COPIES ... eeeeiie ettt e ettt ettt e ettt e et eb e e et e b e et e e r e et e e n e et eeban e e e eaan e eeenans 9
SUMIMIBIY ettt ettt ettt ettt et et e e et ettt et et ettt e ettt e et et e e et e et et e e e e et e et et e r e e 14
2. BASIC USSR ...ttt et et ettt et e e 15
= o TP UPPPTTRUPPPN 15
Getting Data iNtO Y OUP REPOSITONYeeueieiiiii ettt ettt ettt et e e ettt e et ettt e e e et e et ebb e e e enna e e eennns 16
IMPOrting FileS @N0 DIFECLOMESceuuieeiiti ettt ettt e et e et e e et e e et bt e e e et e e e eaaa s 16
Recommended REPOSITONY LBYOULueieeii ittt ettt ettt et ettt e et et e e e nb e e enna e e ennas 17
WHEL'S TN @ INAIME? ... ettt e ettt e ettt e et ettt e ettt e e e ettt aeeeeat e eeeenaaeeeens 17
Creating @ WOIKING COPYeeetiuetiiti ettt ettt ettt ettt et e et e e et o et e et e et e et e et e et e et e et e et e eb e et enna e e e enaans 18
BASIC WOTK CYClE ..ot ettt e et e et e et e et 19
UPAae YOUr WOFKING COPY .. eevveneteeitetette ettt ettt ettt ettt ettt et et e et et e e et e b e e et et e e e e et e e e e eba s 20
MAKE YOUP CRBINGES ... ettt ettt ettt ettt ettt e ettt e et e b s e et e e s et e et s et e et e et e ebe e e e e nnaaeeennen 20
REVIEW Y OUI CREINGESttt e et e et e e ettt e e et e et e ettt e et e et e e e e ab e e e eraa s 21

FIX Y OU IMISTBKES ...ttt ettt ettt ettt e et et e et et e e e e e e eenan s 25
RESOIVE ANY CONFHICES ...ttt ettt e et e et et e et e e et et e e e e et s 26
COMIMIT Y OUP CRBNGES ...ttt ettt ettt ettt r et et e ettt e et e b e et et e e e e et e e e ebe s 32
EXAMINING HISIONY ...ttt e ettt e ettt e ettt e e e et e e et et e e et bt e e e enba s 33
Examining the Details of HiStOrical ChanQESeiiiiiiiiiiire et e e e e eeeans 34
Generating a List Of HiStOriCal ChaNQESuuuiiiiiiiei ittt et e et e et eeeabe e eees 35
Browsing the REPOSITOIYciiiitiiiiiii ettt ettt ettt et e e r e et e it r e et et e e e eaa e e e eana e e ennans 37
Fetching Older REPOSITONY SNBPSNOLSccuueueiiiii ettt ettt e et et e e e et e e e eba s 38
SOMELiMES Y OU JUSE NEEA 10 ClEAN UP ...iiii ittt ettt ettt e e et e e e et e e e eba s 39
DiSPOSiNG Of @ WOIKING COPY ..vueeeitiieteeii ettt ettt ettt ettt et et e b e et e b e e e e e e e e b e e e eraa s 39
Recovering from an INEEMUDPLIONuuu ittt e et e et et et e e e et e e e raa e eennas 39
Dealing With StrUCIUral CONFIICES ceietiie ettt ettt ettt e et et e e et et e e e eeta e eeenes 40
AN EXAMPIE TIEE CONFIICEeeei ettt ettt et e e et e e e e e e e s 40
SUMIMIBIY ettt ettt ettt et et e e et e et e et oot et e e ettt e et et e e et et et e e e et e et et e e e e 44
X0 1V g (o= B o] o Lo ST PPUPPPPRTRRPPPPIN 45
REVISION SPECITIEIS ...ttt et e ettt e ettt e et e e e et e e et e et e aa e e enaans 45

Version Control with Subversion

YIS T T S=, AT o 45

RS YRS Lo [7 1= SRS 46

Peg and OPErative REVISIONSuuiiiiiiiii e e et e e e e e e e e e e e et e e et e e et e e e e e et e e et e et e e et e eaneeaanns 47
0] == 51
RTAY Y e (00 1= (=Y 52
Y o T LU = T T 0] 0= =S P 53
Properties and the SUBVErsion WOrKFIOWoooiiiii e e e 56

W T (o g g = Lo (0] 1= VS =11 o [57

= o ="] 1 P 58
TSRO0 11 g 18] S 58

L o C wH = o 1 SR 59
ENd-0f-Ling CharaCler SEOUENCEScivviiiii et e et e e e e e e e e e et e et e e e e e et s e et e e aa e e et e e et eeanaas 60
FoTalo) T g o IO a1%7= €Tl aT= o BN (= 1 01T 61
L= YT 0 (o IS 1= 11 (1 ') o PN 64
S 0Tz TS I D = ox (0] == PN 68
0 Tox (1 o 72
(0= 1o T 1o ox 73

DR oYL= g To 0 To: 4P 75
Breaking and StEAliNG LOCKSciiuiiiii i e e e et e e e e e e e e e e et e e et e e e et e e et e e et e e et e e e e e et e e aanaaees 76

[Tot N @0 010110 g o= o PSP 78
= g pT= S B 1T o) PP 79
L0172 1010 1= 1 £ N 84
Creating and Modifying ChangEliStSuiiiiiiiie e e e e e e et e e e e e e e e eeaas 85
Changelists AS OPEration FIlLEISuu i e e e e e e e e e e e et e e et e e eean s 86

(O g7z 1010 L= TS I 0T 0] 1S 88

AN AT o4 S Yoo L= PNt 88
o (0 = 00 =S o0 1 = 88
LI O 0 = o= £ P T R 89

RSl 010100 Y PP 92
Y =0 Tw o T aTo =g To IR 1Y = o o PPN 93
TV ST W = = 1o 2 PRSP 93
L LS T a0 ST =0 == 93
(0= 1o = 1= - 0 S 95
WOrKing With YOUI BranChiiiiiii e e e e e e e e e e et e e aa e e eanas 96

The Key Concepts Behind BranChingciiiiiiiiiie e e e e e e e e et e e et e e e e e e e aenas 99

R STV = (oo [P 99
(01472 1010 1= (P 99
Keeping @ BranCh iN SYNCiiii e e e e e e e e e e e e et e e et e e et e eaaeeeen 100
TS e = aTo = =] = o o 102
VL= o g o =g Lo e (=Y = TP 103

[Tl (0T 0o Bt g =g o = P 105
RESUITECHING DEIEIEA [HBIMIS .. it e e e e e e et e e e e e e e e et e e et e e et e e et e eraeeanns 106
0z g Tor o 1Y = o 1 o 107
(0101 4 Y/ o ot (o P 107
Merge SYntax: FUIL DISCIOSUIEiien it e e e e et e e e e e e e e e e st e e et e e et e e et e e san e e st e e eaneeanneees 109
MErgES WiIthOUL IMEIGEINTO . .uuuiiii e e et e e e e e e e e e et e et e e et e e et e e et eeaneeees 110

Y Ko o Y= o T o) [Tox N 111

2] [Twt S 1o T g T~ 112
Keeping a Reintegrated BranCh ALIVEcouu oo e e e e e e e ees 113
Merge-Sensitive Logs ant ANNOLALIONSciuuiiiiie e e e e e e e e e e e e e et e e et e e st e e st e eanneeaanas 114

[\ o107 Tqle o gl o laTo gl gTe J0AN gTorc s i o 115
Y= o =S a= o To IV oY= PN 116
Preventing Naive Clients from Committing MENGESccvuuiiiiii e e e e e eans 117

The Final Word on Merge TraCKingco.uiiiiiiiii e e e e e e e e e e e e e e e e e et e e et e e ean e eanees 117

Version Control with Subversion

LGS 55 L0 = = 1= P 118
=0 T PP PRPPTPR 120
(0= T T S T 0T o] L= = o N 120
Creating @ COMPIEX TaO ..u.vvvueiiieiie et et e et e e e e et e e e e e e et e e et e e et e e e aa e e et et et e e et e e st s eetaeeaneesaneeennaeenns 120

2] e o I\ = T 1= 0= ot RSP SPPI 121
S 00 0 Y/ I Y | PN 121

DL = B) £ 001 O P 122
CommOoN BranChing PatternSciiuiiii e e e e e e e e e e e e e e et e e et e e et e e et e e et e e et e eaa e eaaneeaens 123
REIEASE BranChiES ...t e e e et e e e 123
e 10 = 2] 0 PP 123

RV =0T (o = =T P 124
General Vendor Branch Management PrOCEAUIEcouuiiiiiiiiie e e e e e e e e 125

YT o= o I o [T £ o PPN 126

RS 00100 YT PTPPRPR 128
o = 00T A (o YA AN [T T = (o) o P 129
The Subversion ReEPOSItOrY, DEFINEccoiuiiiiie e e e e e e e e e e e et e e e ean s 129
Strategies for REPOSITOrY DEPIOYMENTiii e e e e e e e e e e e e st e e et e e e e at e e aaneeeanaas 130
Planning Your REPOSITOrY OrganiZationiieuueiunieiiiie e e e s e e e e et e e s e e et e e st e e et e e et e e et e esanaeesneeaen 130
Deciding Where and HOW t0 HOSt Y OUr REPOSITONYvuuiiiniiiiieiiii e e e e e e e e e e et e e e e e e e eaa s 132
(010100 T g o = W B = IS (o] N 133
Creating and Configuring Y OUr REPOSITONYu.iiiuniiiiie e e e e e e e e e e e e e e et e e et e e st e e et e e et e eaaeeansas 135
(1= o R LI R (= 10 =] (] 136
Implementing REPOSITONY HOOKSoiiiiiiiii et e e e e e e e e e e e e et e et e e et e eanaeeees 136
RS G L= YA D] = T o 1o 0= 1 Lo o PPN 138

(S SR e 01 To 1= 1 o] o [N 138

S 00 (0] VALY, = 1011 7= (o= S 138
Y Ao 4 T g = (o R e o PP 138
Commit LOG MESSAGE COMECLIONuuiitiieiii et e e e et et e e e e e e e e e e e et e e et e e et e e et e e et e e et e e et e e et e eanneeeanss 142

Y g o T To T DT ES QS o7 o 142
BEIKEIEY DB RECOVEIY ...uuiiiiiiiiiieiie e et e e et et e e e e e e e e e et e e et e e et e e et e e et e e et e e et e e et e e etn e eaneeeaneeeens 145
Migrating Repository Data EISBWHEIEoiiiiii e e e e 146
FIltering REPOSITONY HISIOIYccuuiiiiiciiii e et et e e et e e st e e et e eanneeeens 150

S 00 0 YA = L= o] o= 1o o P 153

S 00 L0 YA ST ot (U o P 159
Managing REPOSITONY UUIDSiiiiiiiii it e e e e e e et e e e e et e e et e e et e e et e e et e e et e eeaneeaes 160
Moving and REMOVING REPOSITONESccuuiiii i et e et e e e e e e e e e et e e et e e e et e e et e e et e e et e e aneeannns 161
RS 00100 Y PP 161
oS =AY/ G o) 1o U1 - 1o o P 162
L@ N LT USRS 162
(0100 T T o I B = Y/ g e 01 1To 0= 1 o o 163
R LRSS S YIS = oY= PP 163
SVNSEIVE OVEN SSH ..ttt ettt et et et et e et et e et e et et e et e e e e e enas 163

LTSRN = Tl o I I RS = Y= P 164

S o001 00T=: 0T P 0 PP 164
SVNSEIVE, @ CUSIOM SEIVEY .. tniitiie ittt et e et et et e et e et e e e et e et e e e e e e eat e e at e e e e e e et e et e en e e an e ean e ee e eneenaeenaenneen 165
INVOKING The SEIVET ..o e e e e e e e e e e e et e e et e e et e e et e e ean e eanaas 165
Built-in Authentication and AULNOMIZEHONiiiiiiiei e e et eeaee s 169
USING SVNSEIVE WIth SASL ..ot e e e e e et e e et e et e e et e e et e e aaeeanns 171

QLI 101 = T o oY= S P 173

S o I Oo 1 1Te 01 1o g TN o 174
httpd, the APAChE HT TP SEIVEr ...eiiiii e e e e e e e e e e e e et e et e e et e e et e e et e e aneeaenas 175
= 1= o TS] = 176

[RF SToAY o= o 0 Y @0 011 To 0= 1 [o] o 176

PN U110 =)iz o g I @] 1 o g 178

Version Control with Subversion

YU 11 070) 4= 1 o) 0 @] o] o o PN 181
Protecting Network traffic WIth SSL ... e e e e e e e e e e e ees 184
= €0 e o 1= SRR 186
Path-Based AULNOTIZAIONiiiiii e e e e et e e e e et e e e e et e e e e et e e e e st e e e eaen s 192
[TTe g =Y/ 1o o1 o P 197
Supporting Multiple Repository ACCESS MENOASccouuiiii e e e e e 199
7. Customizing Y OUr SUDVEISION EXPEIIENCEivu ittt eei e et e e e e e e e e e e e e e et e et e e et e e et e e e ta e eaan e e st e estnaeernaees 201
gL RSN @0 g Lo U= o) AN == P 201
(001011 To 01z (o g I (== U = 1Yo 1 | PP 201
Configuration and the WINAOWS REJISIIYc.uuiiiiiiiiiii e e e e e e e e e e e e e e et e e et e e eanaees 202
(00111 Te 81¢= Lo g @] 11 To oSN 203
(e o= T2 1o o [USSP 209
(8 gl (= == g o [g o T o =N 209
SUBVErSION'S USE OF LOCAIESvuiiiieeii ittt e et e e et e e e e bt a e e et eeeeaan s 209

L0 LT g To e (= g = I o 1 (o = 210
Using External Differencing and Merge TOOISiiuuiiiiii i e e e e e e et e e e e et e et e e ean e eaas 211
= 10T o L SO 212

= 1= o 1 2 TSP SPPPTN 213

= 1= 1= (o[3P 214

RS 00100 YT PTPPRPR 215
T 1o = (o TR TSN 01V £ o) o P 216
= (Y= = o B o] = Y I 1= o o P 216
S 00 0 Y I Y 217

S 0 L0 YA AN w o == I Y= L 220

(O T o1 I Y PPN 221
Inside the Working Copy AdMiNiStIation ATEaueiuueiiieeii et eiii et e e e e e e e e e e st e e e e et e eatn e e et e st e eanneaannaees 222
BN 0 C= T =0 T= T T = PP 222
Pristine Copies and Property FilEScouu it e e e e 223

L LS T g 1 T A . P 223
The Apache Portable RUNLIME LIbraryooiiiiiiiiiiiii e e e e e e e et e e e e eees 223
FUNCLIONS @NO BBIONS ...t eeeiiii i eee ettt e ettt ettt e e et s e e ettt e e e e e et e e e e et e e e e e et e e e e et e e ae st e e e esbn e eeesbnn s 224

URL and Path REQUITEIMENESuiiiiiiiieiie e e e et e e e e e e e e e e e e et e e et e et e e et e e et e e e e e etn e eatneeenneeeanss 224
Using Languages Other Than C and CHoiuiiii e e e e e e e e e e e e e et e e et e e eanees 224
(0010 LI 041 o =S 225

RS 00100 Y PP 231
9. SUDVErSION COMPIEIE REFEIENCE .. .iuu it ee et e e e e e e e et e e et e e et e e e ta e e et e e et e e et e esn e eaneeeanaaennaaes 232
SV—Subversion CommanG-Line ClIENEouuiiiii e e e e e e ettt e e e et e e e ettreeeestnaeeeeatnaaaaes 232
YT 1031 PN 232

SV SUDCOMIMEANSeevit ettt sttt e e et e e ettt e e ettt e e e ettt e e e ettt e e e eatn s e e e estn s eeeestnneeeestnneeeestnaanees 238
svnadmin—Subversion RePOSItOry AAMINISIFAtioNcouuiiiiieiiiie e e e e e e e e e e e et e e et eeanaee 303
V10> L0 0T AT o1 o 0 303
SVNAAMIN SUDCOMIMEANGS ..ottt e e e e et e e et e e e e et e e e e et e e e e et e e e e et e e e n et e eeeennnns 305
svnlook—Subversion REPOSITOrY EXAMINGIIONciuuiiiiiieii e e e e e e e e e e e e e e e et e e et e e et e e et e e et e eaneeaen 326
ESY 1o o Q@] 1o T 326
SVNTOOK SUBCOMIMEBNGS ... ettt e e e e e ettt e e e et e e e et e e e e bt e e e ebnn e 328
SVNSYNC—SUbVErSioN REPOSITONY IMIITTOMNG . .vvvueiiteiii et e e e e e e e e r e e e e et e e et e e et e e et e e e et e eaaeeatnreeaneraneenen 345
Y0157 4R 011 Lo 345
SVNSYNC SUDCOMIMEAINASuiiitieeii e e e e e e e e e e et e e e e e e e e et e e et e e et e e et e e et e e st e e e aa e eaneeataeetnaeeeneeees 346
SVNSEIVE—CUSIOM SUBVEISION SENVEN ... iiiiiiiiiiiii ettt e e e et e e e et e e et et e e e et e e e e ab e e e eranaas 351
Y101 = VLS Y© o1 o] =N 352
svndumpfilter—Subversion HiStOry FIEINGc...iiii e e e e e e e e e aens 353
Y010 L8 a0l 11 L (= G @] o =N 353
sSVNAUMPFilter SUBCOMIMANGSiiiii e e e e e e e e e e e e e e e et e e eaneeeeas 354
svnversion—Subversion Working Copy VEersion INfOcouuiiiiiiiiiii e e e e e eaae s 357

Vi

Version Control with Subversion

mod_dav_svn—Subversion Apache HTTP Server MOAUIEcoouniiiiiii e 359
mod_authz_svn—Subversion Apache HTTP Authorization MOdUIEco.uiiiiiiiiii e 361

ST 0= = o T o o= =P 362
A= S Tl aTc o B o o= 4 (1= 362

(0 0V = S TalaT= o B o) o= = 363

S 010 0] Y/ 00 PN 364

A. SUBVErSion QUICK-SEA GUITEiieiiiii et e e e e e e e r e et e e et e e e et e e et e e et e e e aa e e an e e et e eeaneeeanss 374
TSz T T TSN 01/ = o] o N 374

[TTe S 07 o I U1 o) P 375

B. SUDVEISION FOF CV S USEIS .. iiiiiieiiii ettt ettt e ettt e e et e e e et et e e e et e ter e e e ettt e e e eeta s e e e estn s e e e estn s eeaesbn s aeeentnnaeaees 377
Revision NUMBErs Are DIffErent INOWiiiiiiiiiiiii e e e e e et e e e et e e e e e b e e e e enen s 377
DTz (0 YA A= 6= Lo PPN 377
More DiSCONNECIE OPEIGHIONScietueiieeit et e e e e e e et e e et e e et e e et e e et e e aa e e et e ee e s e ean e etn e eatneesneretnserrneeenss 378
Distinction Between Status and UPAEEEcovuiiiii i e e e e e e e e e e e e et e e et e e et e e et e e e e eaneeeen 378

S 0P 378

L 0T =1 - 379

2= Lo TSR a0 I 1= o PN 379
YL 0 e W 0 0= 1= 380
(@0 i o === o 11 o PSP 380
Binary FIles and Tranglalioncouuiiiiiiiii e e e e e e e e e e e e e et e e et e e e e e e e e 380
V2= = Tag 1= o 1Y, oo (0= PSP 380

F 011 1< g1 o= 1 o o PP 381
Converting a Repository from CVS 10 SUBVEISIONcouuiiiii e e e e e e e aaas 381
(ORRVIV= oD VAN VAo To W1 (oY== Ko a1 oo [382
WEE IS WEDDAY 2 ..ttt ettt ettt et e e e ettt et e e e e et e e et et e e e e e et e ee sttt e e e e e e e e e aetannesaeeaeeesstsnnnnnaeeees 382

U1 (0)Y7= £ T 1 o [383

(O T oL 105 (0] 1= o1 1 384
Standalone WEDDAY APPIICAIONScuviiiiiieiii et e e e e e e e e et e e et e e et e e et e e aaeeeanns 385
File-EXplorer WEDDAY EXIENSIONScvviiiiiieiiieeiteeee e e et e e e e e e e et e e st e e et e e et e e e et e e et e e et e e et e san e eanneeenns 386

WEebDAV Filesystem IMPIemMENtaiionoiiuuieiiieeii e e e e e e e e e e e e e e e e et e e et e e st e eeanaeeaneenen 387

D T 0T oY/ ¢ o | o) PN 389
g0 1= PP 395

Vii

List of Figures

1. SUDVErSION'S @ICHITECIUNE ... et e ettt ettt ettt e e et e e et e e e et et e e et eb e e e et ab e e et e et e e et et e e e enta s XV
1.1, A typical ClIENt/SEIVEL SYSIEIM .. .ee ittt ettt e et e e ettt et e et ettt b e e et a e e e e eaaan 1
1.2. The ProbBIEm 10 GV0IMcouuiieei ettt e et ettt e et e et e 3
1.3. The [0ck-modify-UNIOCK SOIULIONc.uuiiiiii ettt ettt e e et e e e et e e e e be e 4
1.4. The copy-MOifY-MEIGE SOIULIONceeuueieiiii ettt et e et e et e e ettt e e e et e e e e b e e e erb e 5
1.5. The copy-modify-merge Solution (CONTINUEA)couuuieiiitie ettt e e et e et e e et e e e et e e e eeaa s 6
1.6. TrEE ChaNQES OVEN T8 .. ittt ettt ettt ettt oottt e e ettt e et et e e et et e e et et e e et eb e e et et aeeeeba s 8
1.7. The rePOSItOry'S FIIESYSIEIMttt e e ettt e et et a e et e b e e e et e e e e ena s 11
4.1, Branches Of GEVEIOPIMENLcoiueiiieie ettt et et e et e e et eb e e ettt e et e bb e et e b e e e e ra s 93
4.2, SEAITING FEPOSITONY TBYOUL ... eeeetee ettt ettt et ettt et e et e e ettt e et e e bt et e bb e ettt e e e et eeeeba e 94
4.3. REPOSITONY WIth NMEW COPY ...eeiitiiee ettt ettt e et e et e e ettt e e et et e e et et e e e et b e e et et e e et et e e e eennnnes 96
4.4. The branching of 0N filE'S NISIONYceiui i ettt et e e e e enaaas 97
8.1. Files and direCtories in tWO GiMENSIONSiiiiteei ittt ettt e et e e et e e et et e e e e et e e e enba s 219
8.2. Versioning time—the third dimension! e et e e e 219

viii

List of Tables

1.1, REPOSITONY GCCESS URLS .. .ceitieiiiiii ettt ettt ettt ettt ettt oottt h e et e b e et e bt et e b e et e b e et et e e e ena s 8
2.1, COMMON [OQ FEOUESES ... eeeett ettt ettt ettt ettt et ettt et ettt e et ettt e ettt e e e et e b et e et e be e e e et bb e e e eebb e eeeebeaeeenes 36
4.1. Branching and Merging COMMEINGSuuuuttirtu ettt ettt e eeett e e eettreeeett e e eett e e eeestaeeeest s eeeebt e eeeestn s eeeentnaaaees 128
5.1. RePOSItory data SIOre COMPEITSONuuiietin ettt ettt ettt ettt e et et e et eb e et et e et et e et e bt e et et e e e e b e e e eba e eeas 133
6.1. Comparison Of SUDVErSION SEIVES OPLIONSiiiiii ettt ettt e et e et et e e e e et e e e e ena s 162
C.1. CommMON WEDDAYV CHIENES ...ttt e et e et e e et et e e et et e e et et e e e e aaa s 384

List of Examples

4.1.
51
52
53.
6.1.
6.2.
6.3.
6.4.
6.5.
7.1.
7.2
7.3.
7.4.
7.5.
7.6.
7.7.
8.1
8.2
8.3.

Merge-tracking gatekeeper start-Commit NOOK SCHPLccvvreiieiiii e et eer e e 117
txn-info.sh (reporting outstanding tranNSACHIONS)ueiieit ettt ettt e e et e et e e e et e e e ene e e enba e eeens 143
Mirror repository's pre-revprop-change NOOK SCIPLcceuuuiiiiii e eeeans 154
Mirror repository's start-Commit NOOK SCITEuuuiiiiit et e e e e 154
A sample svnserve 1aunchd Job definitionco.uiiii e 168
A sample configuration fOr @NONYMOUS GCCESSuuuiirutiietiiii et ettt et e eeee e e eat et et e e e eaa e e e eab e e e een e eeenens 182
A sample configuration for aUtNENtICAIEA BCCESS iieeti ittt et eeeaan s 183
A sample configuration for mixed authentiCated/an0NYIMOUS BCCESScviertuiieiiiiiieeeeii e ee et eeet e eeai e eeri e eeens 183
Disabling path CheCks altOgEINES i e et e et e ettt e e e et e e e ena e eees 184
Sample registration entries (.1eg) Tile i e e 202
Lo AT =" o X o)A T PP PT TP UPPPTN 212
Lo AT = o o TP PP UPP PP UPPPTRRSPPPIN 213
oG- o oY PP PP TS PPPTTT 213
oY= o) o PSP S PP PP TOPPPTRUTPPPIN 214
LTS (0[S =0 1 0 OO 214
0T Co [T = o N o7 PP PPPPTT 215
USING the FEPOSITONY TBYEN ... ettt ettt e e et e e et b e e et et e e et et e e e e et e e e eaba s 226
Using the repository layer With PYTNON ...t e e 228
A PYINON SEAIUS CrBWIET ...ttt ettt ettt e e et et e e et et e e et et n e e et et n e e e eete e eeeatnnaeeees 229

Foreword

Karl Fogel
Chicago, March 14, 2004.

A bad Frequently Asked Questions (FAQ) sheet isonethat is composed not of the questions people actually ask, but of the questions
the FAQ's author wishes people would ask. Perhaps you've seen the type before:

Q: How can | use Glorbosoft XY Z to maximize team productivity?

A: Many of our customerswant to know how they can maximize productivity through our patented office groupware
innovations. The answer issimple. Firgt, click onthe Fi | e menu, scroll downtol ncrease Productivity,
then...

The problem with such FAQs isthat they are not, in aliteral sense, FAQs at all. No one ever called the tech support line and asked,
“How can we maximize productivity?’ Rather, people asked highly specific questions, such as“How can we change the calendaring
system to send reminders two days in advance instead of one?’ and so on. But it's a lot easier to make up imaginary Frequently
Asked Questions than it is to discover the real ones. Compiling a true FAQ sheet requires a sustained, organized effort: over the
lifetime of the software, incoming questions must be tracked, responses monitored, and all gathered into a coherent, searchablewhole
that reflects the collective experience of users in the wild. It calls for the patient, observant attitude of a field naturalist. No grand
hypothesizing, no visionary pronouncements here—open eyes and accurate note-taking are what's needed most.

What | love about this book isthat it grew out of just such a process, and showsit on every page. It isthe direct result of the authors
encounters with users. It began with Ben Collins-Sussman's observation that people were asking the same basic questions over and
over on the Subversion mailing lists: what are the standard workflows to use with Subversion? Do branches and tags work the same
way asin other version control systems? How can | find out who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in the summer of 2002 to write The
Subversion Handbook, a 60-page manual that covered all the basics of using Subversion. The manual made no pretense of being
complete, but it was distributed with Subversion and got users over that initial hump in the learning curve. When O'Reilly decided
to publish afull-length Subversion book, the path of least resistance was obvious: just expand the Subversion handbook.

The three coauthors of the new book were thus presented with an unusual opportunity. Officialy, their task was to write abook top-
down, starting from a table of contents and an initia draft. But they also had access to a steady stream—indeed, an uncontrollable
geyser—of bottom-up source material. Subversion was aready in the hands of thousands of early adopters, and those users were
giving tons of feedback, not only about Subversion, but also about its existing documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mailing lists and chat rooms incessantly,
carefully noting the problems users were having in real-life situations. Monitoring such feedback was part of their job descriptions
at CollabNet anyway, and it gave them a huge advantage when they set out to document Subversion. The book they produced is
grounded firmly in the bedrock of experience, not in the shifting sands of wishful thinking; it combines the best aspects of user
manual and FAQ sheet. This duality might not be noticeable on afirst reading. Taken in order, front to back, the book is smply a
straightforward description of a piece of software. There's the overview, the obligatory guided tour, the chapter on administrative
configuration, some advanced topics, and of course, a command reference and troubleshooting guide. Only when you come back
to it later, seeking the solution to some specific problem, does its authenticity shine out: the telling details that can only result from
encounters with the unexpected, the examples honed from genuine use cases, and most of all the sensitivity to the user's needs and
the user's point of view.

Of course, no one can promise that this book will answer every question you have about Subversion. Sometimes the
precision with which it anticipates your questions will seem eerily telepathic; yet occasionaly, you will stumble into a
hole in the community's knowledge and come away empty-handed. When this happens, the best thing you can do is email
<user s@ubver si on. apache. or g> and present your problem. The authors are till there and still watching, and the authors
include not just thethree listed on the cover, but many otherswho contributed correctionsand original material. From the community's
point of view, solving your problem is merely apleasant side effect of amuch larger project—namely, slowly adjusting this book, and
ultimately Subversion itself, to more closely match the way people actually useit. They are eager to hear from you, not only because
they can help you, but because you can help them. With Subversion, as with all active free software projects, you are not alone.

Xi

Foreword

Let this book be your first companion.

Xii

Preface

“It isimportant not to let the perfect become the enemy of the good, even when you can agree on what perfect is.
Doubly so when you can't. As unpleasant as it is to be trapped by past mistakes, you can't make any progress by
being afraid of your own shadow during design.”

—Greg Hudson, Subversion devel oper

In the world of open source software, the Concurrent Versions System (CVS) was the tool of choice for version control for many
years. Andrightly so. CV Swas open source softwareitself, and its nonrestrictive modus operandi and support for networked operation
allowed dozens of geographically dispersed programmersto share their work. It fit the collaborative nature of the open source world
very well. CV S and its semi-chaotic development model have since become cornerstones of open source culture.

But CVSwas not without its flaws, and simply fixing those flaws promised to be an enormous effort. Enter Subversion. Subversion
was designed to be a successor to CV'S, and its originators set out to win the hearts of CV S users in two ways—by creating an open
source system with adesign (and “look and feel”) similar to CV'S, and by attempting to avoid most of CV S's noticeable flaws. While
the result wasn't—and isn't—the next great evolution in version control design, Subversion is very powerful, very usable, and very
flexible.

This book is written to document the 1.6 series of the Apache Subversi on™? version control system. We have made every attempt
to be thorough in our coverage. However, Subversion has a thriving and energetic development community, so already a number of
features and improvements are planned for future versions that may change some of the commands and specific notes in this book.

What Is Subversion?

Subversion is a free/open source version control system (VCS). That is, Subversion manages files and directories, and the changes
made to them, over time. This allows you to recover older versions of your data or examine the history of how your data changed.
In this regard, many people think of aversion control system as a sort of “time machine.”

Subversion can operate across networks, which allows it to be used by people on different computers. At some level, the ability for
various people to modify and manage the same set of data from their respective locations fosters collaboration. Progress can occur
more quickly without a single conduit through which all modifications must occur. And because the work is versioned, you need not
fear that quality isthe trade-off for losing that conduit—if some incorrect change is made to the data, just undo that change.

Some version control systems are also software configuration management (SCM) systems. These systems are specifically tailored
to manage trees of source code and have many features that are specific to software devel opment—such as natively understanding
programming languages, or supplying tools for building software. Subversion, however, is not one of these systems. It is a genera
system that can be used to manage any collection of files. For you, those files might be source code—for others, anything from
grocery shopping liststo digital video mixdowns and beyond.

Is Subversion the Right Tool?

If you're a user or system administrator pondering the use of Subversion, the first question you should ask yourself is: "Is this the
right tool for the job?" Subversion is a fantastic hammer, but be careful not to view every problem as a nail.

If you need to archive old versions of files and directories, possibly resurrect them, or examine logs of how they've changed over
time, then Subversion is exactly the right tool for you. If you need to collaborate with people on documents (usually over a network)
and keep track of who made which changes, then Subversion is also appropriate. Thisiswhy Subversion is so often used in software
development environments—working on a development team is an inherently social activity, and Subversion makes it easy to
collaborate with other programmers. Of course, there's a cost to using Subversion as well: administrative overhead. You'll need to

Iwell refer toit si mply as* Subversion” throughout this book. Y ou'll thank us when you realize just how much space that saves!

Xiii

Preface

manage a data repository to store the information and all its history, and be diligent about backing it up. When working with the
data on a daily basis, you won't be able to copy, move, rename, or delete files the way you usualy do. Instead, you'll have to do
all of those things through Subversion.

Assuming you're fine with the extra workflow, you should still make sure you're not using Subversion to solve a problem that other
tools solve better. For example, because Subversion replicates data to al the collaborators involved, a common misuse is to treat
it as a generic distribution system. People will sometimes use Subversion to distribute huge collections of photos, digital music, or
software packages. The problem is that this sort of data usually isn't changing at al. The collection itself grows over time, but the
individual files within the collection aren't being changed. In this case, using Subversion is “overkill 2 Therearesi mpler tools that
efficiently replicate data without the overhead of tracking changes, such asrsync or unison.

Subversion's History

In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking devel opers to write a replacement for CV'S. CollabNet offered®
a collaboration software suite called CollabNet Enterprise Edition (CEE), of which one component was version control. Although
CEE used CVSasitsinitial version control system, CV S'slimitations were obvious from the beginning, and CollabNet knew it would
eventually have to find something better. Unfortunately, CVS had become the de facto standard in the open source world largely
because there wasn't anything better, at least not under afreelicense. So CollabNet determined to write anew version control system
from scratch, retaining the basic ideas of CV'S, but without the bugs and misfeatures.

In February 2000, they contacted Karl Fogel, the author of Open Source Development with CVS (Coriolis, 1999), and asked if he'd
like to work on this new project. Coincidentally, at the time Karl was already discussing a design for a new version control system
with hisfriend Jim Blandy. In 1995, the two had started Cyclic Software, acompany providing CV'S support contracts, and although
they later sold the business, they still used CV'S every day at their jobs. Their frustration with CV'S had led Jim to think carefully
about better ways to manage versioned data, and he'd already come up with not only the Subversion name, but also the basic design
of the Subversion data store. When CollabNet called, Karl immediately agreed to work on the project, and Jim got his employer, Red
Hat Software, to essentially donate him to the project for an indefinite period of time. CollabNet hired Karl and Ben Collins-Sussman,
and detailed design work began in May 2000. With the help of some well-placed prods from Brian Behlendorf and Jason Robbins
of CollabNet, and from Greg Stein (at the time an independent developer active in the WebDAV/DeltaV specification process),
Subversion quickly attracted a community of active developers. It turned out that many people had encountered the same frustrating
experiences with CV S and welcomed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground in version control methodology, they
just wanted to fix CVS. They decided that Subversion would match CV S's features and preserve the same devel opment model, but
not duplicate CVS's most obvious flaws. And although it did not need to be a drop-in replacement for CV'S, it should be similar
enough that any CV S user could make the switch with little effort.

After 14 months of coding, Subversion became “ self-hosting” on August 31, 2001. That is, Subversion developers stopped using
CV S to manage Subversion's own source code and started using Subversion instead.

While CollabNet started the project, and still funds a large chunk of the work (it pays the salaries of a few full-time Subversion
developers), Subversionisrun like most open source projects, governed by aloose, transparent set of rulesthat encourage meritocracy.
In 2009, CollabNet worked with the Subversion developers towards the goal of integrating the Subversion project into the Apache
Software Foundation (ASF), one of the most well-known collectives of open source projects in the world. Subversion's technical
roots, community priorities, and development practices were a perfect fit for the ASF, many of whose members were already active
Subversion contributors. In early 2010, Subversion was fully adopted into the ASF's family of top-level projects, moved its project
web presence to http://subversion.apache.org, and was rechristened “ Apache Subversion”.

Subversion's Architecture

Figure 1, “ Subversion's architecture” illustrates a“mile-high” view of Subversion's design.

20r asafriend putsit, “swatting afly with aBuick.”
SCollabNet Enterprise Edition has since been replaced by a new product line called CollabNet TeamForge.

Xiv

http://www.collab.net
http://subversion.apache.org

Preface

Figure 1. Subversion's ar chitecture

commandling
client app

GUI client apps

__ Citant
‘.«"d’- intertace
Cliant Library

Working Gopy /

Managament #

Library
Repository Access
Dav VN Local

£
-

4
/ Ye Olde Internet
{Ary TCPAP Matwork)

Apache
miod daw

SVnaanne

mod_dav_swn

Subvaersion Repository

Reposiony
Intertace

'

Berkeley DB

!

FSFS

diagram by Brian 'W. Fitzpatnck «fitz & red-bean.comes

On one end is a Subversion repository that holds all of your versioned data. On the other end is your Subversion client program,
which manages local reflections of portions of that versioned data. Between these extremes are multiple routes through a Repository

XV

Preface

Access (RA) layer, some of which go across computer networks and through network servers which then access the repository, others
of which bypass the network altogether and access the repository directly.

Subversion's Components

Subversion, once installed, has a number of different pieces. The following isaquick overview of what you get. Don't be alarmed if
the brief descriptions leave you scratching your head—yplenty more pages in this book are devoted to aleviating that confusion.

svn
The command-line client program
svnversion
A program for reporting the state (in terms of revisions of the items present) of aworking copy
svnlook
A tool for directly inspecting a Subversion repository
svnadmin
A tool for creating, tweaking, or repairing a Subversion repository
mod_dav_svn
A plug-in module for the Apache HTTP Server, used to make your repository available to others over a network
svnserve

A custom standal one server program, runnable as a daemon process or invokable by SSH; another way to make your repository
available to others over a network

svndumpfilter
A program for filtering Subversion repository dump streams
svnsync

A program for incrementally mirroring one repository to another over a network

What's New in Subversion

Thefirst edition of this book was published by O'Reilly Mediain 2004, shortly after Subversion had reached 1.0. Since that time, the
Subversion project has continued to release new major releases of the software. Here's a quick summary of major new changes since
Subversion 1.0. Note that thisis not acomplete list; for full details, please visit Subversion'sweb site at http://subversion.apache.org.

Subversion 1.1 (September 2004)

Release 1.1 introduced FSFS, a flat-file repository storage option for the repository. While the Berkeley DB backend is still
widely used and supported, FSFS has since become the default choice for newly created repositories due to its low barrier to
entry and minimal maintenance requirements. Also in this rel ease came the ability to put symbolic links under version control,
auto-escaping of URLS, and alocalized user interface.

Subversion 1.2 (May 2005)

Release 1.2 introduced the ability to create server-side locks on files, thus serializing commit access to certain resources. While
Subversion is till a fundamentally concurrent version control system, certain types of binary files (e.g. art assets) cannot

XVi

http://subversion.apache.org

Preface

be merged together. The locking feature fulfills the need to version and protect such resources. With locking also came a
complete WebDAYV auto-versioning implementation, all owing Subversion repositoriesto be mounted as network folders. Finally,
Subversion 1.2 began using a new, faster binary-differencing algorithm to compress and retrieve old versions of files.

Subversion 1.3 (December 2005)

Release 1.3 brought path-based authorization controls to the svnserve server, matching a feature formerly found only in the
Apache server. The Apache server, however, gained some new logging features of its own, and Subversion's API bindings to
other languages also made great leaps forward.

Subversion 1.4 (September 2006)

Release 1.4 introduced a whole new tool—svnsync—for doing one-way repository replication over a network. Major parts of
the working copy metadata were revamped to no longer use XML (resulting in client-side speed gains), while the Berkeley DB
repository backend gained the ability to automatically recover itself after a server crash.

Subversion 1.5 (June 2008)

Release 1.5 took much longer to finish than prior releases, but the headliner feature was gigantic: semi-automated tracking of
branching and merging. This was a huge boon for users, and pushed Subversion far beyond the abilities of CVS and into the
ranks of commercial competitors such as Perforce and ClearCase. Subversion 1.5 also introduced a bevy of other user-focused
features, such as interactive resolution of file conflicts, sparse checkouts, client-side management of changelists, powerful new
syntax for externals definitions, and SASL authentication support for the svnserve server.

Subversion 1.6 (March 2009)

Release 1.6 continued to make branching and merging more robust by introducing tree conflicts, and offered improvements to
several other existing features: more interactive conflict resolution options; de-telescoping and outright exclusion support for
sparse checkouts; file-based externals definitions; and operational logging support for svnserve similar to what mod_dav_svn
offered. Also, the command-line client introduced a new shortcut syntax for referring to Subversion repository URLS.

Audience

Thisbook iswritten for computer-literate folk who want to use Subversion to manage their data. While Subversion runs on a number
of different operating systems, its primary user interface is command-line-based. That command-line tool (svn), and some additional
auxiliary programs, are the focus of this book.

For consistency, the examplesin this book assume that the reader is using a Unix-like operating system and isrelatively comfortable
with Unix and command-line interfaces. That said, the svn program also runs on non-Unix platforms such as Microsoft Windows.
With afew minor exceptions, such as the use of backward slashes (\) instead of forward dashes (/) for path separators, the input to
and output from this tool when run on Windows are identical to that of its Unix counterpart.

Most readers are probably programmers or system administrators who need to track changesto source code. Thisisthe most common
use for Subversion, and therefore it is the scenario underlying all of the book's examples. But Subversion can be used to manage
changes to any sort of information—images, music, databases, documentation, and so on. To Subversion, all dataisjust data.

While this book is written with the assumption that the reader has never used a version control system, we've aso tried to make
it easy for users of CV'S (and other systems) to make a painless leap into Subversion. Specia sidebars may mention other version
control systems from time to time, and Appendix B, Subversion for CVS Users summarizes many of the differences between CVS
and Subversion.

Note also that the source code exampl es used throughout the book are only examples. Whilethey will compilewith the proper compiler
incantations, they are intended to illustrate a particular scenario and not necessarily to serve as examples of good programming style
or practices.

XVii

Preface

How to Read This Book

Technical books always face a certain dilemma: whether to cater to top-down or to bottom-up learners. A top-down learner prefersto
read or skim documentation, getting alarge overview of how the system works; only then does she actually start using the software.
A bottom-up learner isa“learn by doing” person—someone who just wants to dive into the software and figure it out as she goes,
referring to book sections when necessary. Most books tend to be written for one type of person or the other, and this book is
undoubtedly biased toward top-down learners. (And if you're actually reading this section, you're probably already atop-down learner
yourself!) However, if you're a bottom-up person, don't despair. While the book may be laid out as a broad survey of Subversion
topics, the content of each section tends to be heavy with specific examples that you can try-by-doing. For the impatient folks who
just want to get going, you can jump right to Appendix A, Subversion Quick-Sart Guide.

Regardless of your learning style, thisbook aimsto be useful to people of widely different backgrounds—from those with no previous
experience in version control to experienced system administrators. Depending on your own background, certain chapters may be
more or lessimportant to you. The following can be considered a“recommended reading list” for various types of readers:

Experienced system administrators
The assumption here is that you've probably used version control before and are dying to get a Subversion server up and
running ASAP. Chapter 5, Repository Administration and Chapter 6, Server Configuration will show you how to create your
first repository and make it available over the network. After that's done, Chapter 2, Basic Usage and Appendix B, Subversion
for CVSUsers are the fastest routes to learning the Subversion client.

New users
Y our administrator has probably set up Subversion already, and you need to learn how to use the client. If you've never used
a version control system, then Chapter 1, Fundamental Concepts is a vital introduction to the ideas behind version control.
Chapter 2, Basic Usage is a guided tour of the Subversion client.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. Y ou're going to want to learn how to do more
advanced things with Subversion, such as how to use Subversion's property support (Chapter 3, Advanced Topics), how to use
branches and perform merges (Chapter 4, Branching and Merging), how to configure runtime options (Chapter 7, Customizing
Your Subversion Experience), and other things. These chapters aren't critical at first, but be sure to read them once you're
comfortable with the basics.

Developers

Presumably, you're already familiar with Subversion, and now want to either extend it or build new software on top of its many
APIs. Chapter 8, Embedding Subversion isjust for you.

Thebook endswith reference material—Chapter 9, Subversion Compl ete Referenceisareferenceguidefor all Subversion commands,

and the appendixes cover anumber of useful topics. These are the chapters you're mostly likely to come back to after you've finished
the book.

Organization of This Book

The chapters that follow and their contents are listed here:
Chapter 1, Fundamental Concepts

Explains the basics of version control and different versioning models, along with Subversion's repository, working copies, and
revisions.

XViii

Preface

Chapter 2, Basic Usage

Walks you through a day in the life of a Subversion user. It demonstrates how to use a Subversion client to obtain, modify,
and commit data.

Chapter 3, Advanced Topics

Coversmore complex featuresthat regular userswill eventually comeinto contact with, such as versioned metadata, filelocking,
and peg revisions.

Chapter 4, Branching and Merging

Discusses branches, merges, and tagging, including best practices for branching and merging, common use cases, how to undo
changes, and how to easily swing from one branch to the next.

Chapter 5, Repository Administration

Describes the basics of the Subversion repository, how to create, configure, and maintain a repository, and the tools you can
useto do all of this.

Chapter 6, Server Configuration

Explains how to configure your Subversion server and offers different ways to access your repository: HTTP, the svn protocol,
and local disk access. It also covers the details of authentication, authorization and anonymous access.

Chapter 7, Customizing Your Subversion Experience

Exploresthe Subversion client configuration files, the handling of internationalized text, and how to make external toolscooperate
with Subversion.

Chapter 8, Embedding Subversion

Describestheinternalsof Subversion, the Subversion filesystem, and the working copy administrative areasfrom aprogrammer's
point of view. It also demonstrates how to use the public APIs to write a program that uses Subversion.

Chapter 9, Subversion Complete Reference

Explainsin great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples for the whole family!
Appendix A, Subversion Quick-Start Guide

For the impatient, awhirlwind explanation of how to install Subversion and start using it immediately. Y ou have been warned.
Appendix B, Subversion for CVSUsers

Covers the similarities and differences between Subversion and CV'S, with numerous suggestions on how to break all the bad
habits you picked up from years of using CVS. Included are descriptions of Subversion revision numbers, versioned directories,
offline operations, update versus status, branches, tags, metadata, conflict resolution, and authentication.

Appendix C, WebDAV and Autoversioning

Describes the details of WebDAV and DeltaV and how you can configure your Subversion repository to be mounted read/write
asaDAYV share.

Appendix D, Copyright

A copy of the Creative Commons Attribution License, under which this book is licensed.

XiX

Preface

This Book Is Free

This book started out as bits of documentation written by Subversion project developers, which were then coalesced into a single
work and rewritten. As such, it has always been under a free license (see Appendix D, Copyright). In fact, the book was written in
the public eye, originally as part of the Subversion project itself. This means two things:

« You will alwaysfind the latest version of this book in the book's own Subversion repository.

» You can make changes to this book and redistribute it however you wish—it's under a free license. Y our only obligation is to
maintain proper attribution to the original authors. Of course, we'd much rather you send feedback and patches to the Subversion
developer community, instead of distributing your private version of this book.

The online home of this book's development and most of the volunteer-driven translation efforts regarding it is http://svnbook.red-
bean.com. There you can find links to the latest releases and tagged versions of the book in various formats, as well as instructions
for accessing the book's Subversion repository (where its DocBook XML source code lives). Feedback is wel comed—encouraged,
even. Please submit all comments, complaints, and patches against the book sourcesto <svnbook- dev@ ed- bean. comnp.

Acknowledgments

Thisbook would not be possible (nor very useful) if Subversiondid not exist. For that, the authorswould liketo thank Brian Behlendorf
and CollabNet for the vision to fund such a risky and ambitious new open source project; Jim Blandy for the original Subversion
name and design—we love you, Jim; and Karl Fogel for being such agood friend and a great community leader, in that order.*

Thanks to O'Reilly and the team of professional editors who have helped us polish this text at various stages of its evolution; Chuck
Toporek, LindaMui, Tatiana Apandi, Mary Brady, and Mary Treseler. Y our patience and support has been tremendous.

Finaly, we thank the countless people who contributed to this book with informal reviews, suggestions, and patches. An exhaustive
listing of those folks' names would be impractical to print and maintain here, but may their names live on forever in this book's
version control history!

40h, and thanks, Karl, for bei ng too overworked to write this book yourself.

XX

http://svnbook.red-bean.com
http://svnbook.red-bean.com

Chapter 1. Fundamental Concepts

This chapter is a short, casual introduction to Subversion and its approach to version control. We begin with a discussion of general
version control concepts, work our way into the specific ideas behind Subversion, and show some simple examples of Subversion
inuse.

Even though the examples in this chapter show people sharing collections of program source code, keep in mind that Subversion can
manage any sort of file collection—it's not limited to helping computer programmers.

Version Control Basics

A version control system (or revision control system) is a system that tracks incremental versions (or revisions) of filesand, in some
cases, directories over time. Of course, merely tracking the various versions of a user's (or group of users) files and directoriesisn't
very interesting in itself. What makes a version control system useful is the fact that it allows you to explore the changes which
resulted in each of those versions and facilitates the arbitrary recall of the same.

In this section, we'll introduce some fairly high-level version control system components and concepts. Well limit our discussion to
modern version control systems—in today's interconnected world, thereisvery little point in acknowledging version control systems
which cannot operate across wide-area networks.

The Repository
At the core of the version control system isarepository, which isthe central store of that system's data. The repository usually stores
information in the form of a filesystem tree—a hierarchy of files and directories. Any number of clients connect to the repository,

and then read or write to these files. By writing data, a client makes the information available to others; by reading data, the client
receives information from others. Figure 1.1, “A typical client/server system” illustrates this.

Figure 1.1. A typical client/server system
Repository

[]
Wiite HFﬂcJ
Client Client

Why is this interesting? So far, this sounds like the definition of a typical file server. And indeed, the repository is a kind of file
server, but it's not your usual breed. What makesthe repository special isthat asthefilesin the repository are changed, the repository
remembers each version of those files.

When aclient reads data from the repository, it normally sees only the latest version of the filesystem tree. But what makes aversion
control client interesting isthat it also hasthe ability to request previous states of the filesystem from the repository. A version control
client can ask historical questions such as“What did this directory contain last Wednesday?’ and “Who was the last person to change
thisfile, and what changes did he make?’ These are the sorts of questions that are at the heart of any version control system.

Fundamental Concepts

The Working Copy

A version control system'svalue comesfrom thefact that it tracks versions of filesand directories, but the rest of the software universe
doesn't operate on “versions of files and directories’. Most software programs understand how to operate only on asingle version of
a specific type of file. So how does a version control user interact with an abstract—and, often, remote—repository full of multiple
versions of various files in a concrete fashion? How does his or her word processing software, presentation software, source code
editor, web design software, or some other program—all of which trade in the currency of simple datafiles—get accessto such files?
The answer isfound in the version control construct known as aworking copy.

A working copy is, quite literally, alocal copy of a particular version of a user's VCS-managed data upon which that user is free
to work. Working copies' appear to other software just as any other local directory full of files, so those programs don't have to be
“version-control-aware” in order to read from and write to that data. The task of managing the working copy and communicating
changes made to its contents to and from the repository falls squarely to the version control system's client software.

Versioning Models

If the primary mission of a version control system is to track the various versions of digital information over time, a very close
secondary mission in any modern version control system is to enable collaborative editing and sharing of that data. But different
systems use different strategies to achieve this. It's important to understand these different strategies, for a couple of reasons. First,
it will help you compare and contrast existing version control systems, in case you encounter other systems similar to Subversion.
Beyond that, it will also help you make more effective use of Subversion, since Subversion itself supports a couple of different ways
of working.

The problem of file sharing

All version control systems have to solve the same fundamental problem: how will the system allow users to share information, but
prevent them from accidentally stepping on each other'sfeet? It'sal too easy for usersto accidentally overwrite each other's changes
in the repository.

Consider the scenario shown in Figure 1.2, “The problem to avoid”. Suppose we have two coworkers, Harry and Sally. They each
decide to edit the same repository file at the same time. If Harry saves his changes to the repository firgt, it's possible that (a few
moments later) Sally could accidentally overwrite them with her own new version of the file. While Harry's version of the file won't
be lost forever (because the system remembers every change), any changes Harry made won't be present in Sally's newer version of
the file, because she never saw Harry's changes to begin with. Harry'swork is still effectively lost—or at least missing from the latest
version of the file—and probably by accident. Thisis definitely a situation we want to avoid!

The term “working copy” can be generally applied to any one file version's local instance. When most folks use the term, though, they are referring to a whole
directory tree containing files and subdirectories managed by the version control system.

Fundamental Concepts

Figure 1.2. The problem to avoid

Two users read the same file

Repository
A

Read Read —
A

Harry Sally

L=

Harry publishes his version first
Repository

Write —I

| .

e

H

Harry Sally

They both begin ta edit their copies
Repository

Harry Sally

Sally accidentally overwriles HorryS version
Repasitory

L
X b

Harry Sally

The lock-modify-unlock solution

Many version control systems use alock-modify-unlock model to address the problem of many authors clobbering each other's work.
In this model, the repository allows only one person to change afile at atime. This exclusivity policy is managed using locks. Harry
must “lock” afile before he can begin making changesto it. If Harry haslocked afile, Sally cannot also lock it, and therefore cannot
make any changesto that file. All she can do isread the file and wait for Harry to finish his changes and release hislock. After Harry
unlocksthefile, Sally can take her turn by locking and editing the file. Figure 1.3, “The lock-modify-unlock solution” demonstrates

this simple solution.

Fundamental Concepts

Figure 1.3. The lock-modify-unlock solution

Harry “locks” file 4, then copies While Harry edits, Sally’s lock
it for editing attempt fails
Repository Repository

A A

10k |
I feod Lock
)

Harry Sally Harry Sally
Harry writes his version, then Now Sally can fock, read, and
releases his lock et the lntest version
Repository Repository

A A
Rend
LK l
]]

Harry Sally Harry Sally

The problem with the lock-modify-unlock model isthat it's a bit restrictive and often becomes a roadblock for users:

Locking may cause administrative problems. Sometimes Harry will lock afile and then forget about it. Meanwhile, because Sally
isstill waiting to edit the file, her hands aretied. And then Harry goes on vacation. Now Sally hasto get an administrator to release
Harry's lock. The situation ends up causing alot of unnecessary delay and wasted time.

Locking may cause unnecessary serialization. What if Harry is editing the beginning of atext file, and Sally simply wantsto edit
the end of the samefile? These changes don't overlap at all. They could easily edit the file simultaneously, and no great harm would
come, assuming the changes were properly merged together. There's no need for them to take turnsin this situation.

Locking may create a fal se sense of security. Suppose Harry locks and editsfile A, while Sally simultaneously locks and editsfile
B. But what if A and B depend on one another, and the changes made to each are semantically incompatible? Suddenly A and B
don't work together anymore. The locking system was powerless to prevent the problem—yet it somehow provided a false sense
of security. It's easy for Harry and Sally to imagine that by locking files, each is beginning a safe, insulated task, and thus they
need not bother discussing their incompatible changes early on. Locking often becomes a substitute for real communication.

The copy-modify-merge solution

Subversion, CVS, and many other version control systems use a copy-modify-merge model as an alternative to locking. In this
model, each user's client contacts the project repository and creates a personal working copy. Users then work simultaneously and

Fundamental Concepts

independently, modifying their private copies. Finally, the private copies are merged together into anew, final version. The version
control system often assists with the merging, but ultimately, a human being is responsible for making it happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied from the repository. They work
concurrently and make changes to the same file A within their copies. Sally saves her changes to the repository first. When Harry
attempts to save his changes later, the repository informs him that hisfile A is out of date. In other words, file A in the repository has
somehow changed since he last copied it. So Harry asks his client to merge any new changes from the repository into his working
copy of file A. Chances are that Sally's changes don't overlap with his own; once he has both sets of changes integrated, he saves
his working copy back to the repository. Figure 1.4, “ The copy-modify-merge solution” and Figure 1.5, “The copy-modify-merge
solution (continued)” show this process.

Figure 1.4. The copy-modify-merge solution

Two users copy the same file They both begin ta edit their copies
Repository Repository
A A

I—Emd Hmdq h h
4] 4]

Harry Sally Harry Sally
Sally publishes her version first Harry gels an “oul-ef-dale” error
Repasitory Repository

Sally

Fundamental Concepts

Figure 1.5. The copy-modify-mer ge solution (continued)

Harry compares the latest version A new merged version is created
fio his oum
Repository Repository

B
fead
[~ ™ [
%

Harry Sally Harry Sally
The merged version is published New both users have each
athers" changes
Repository Repository
[~

— Wite _I Read

Sally Harry Sally

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a conflict, and it's usually not much
of aproblem. When Harry asks his client to merge the latest repository changesinto hisworking copy, his copy of file A is somehow
flagged as being in a state of conflict: helll be able to see both sets of conflicting changes and manually choose between them. Note
that software can't automatically resolve conflicts; only humans are capable of understanding and making the necessary intelligent
choices. Once Harry has manually resolved the overlapping changes—perhaps after a discussion with Sally—he can safely save the
merged file back to the repository.

The copy-modify-merge model may sound abit chaotic, but in practice, it runs extremely smoothly. Users can work in parallel, never
waiting for one another. When they work on the same files, it turns out that most of their concurrent changes don't overlap at all;
conflicts are infrequent. And the amount of time it takesto resolve conflictsis usually far less than the time lost by alocking system.

Intheend, it all comesdown to onecritical factor: user communication. When users communi cate poorly, both syntactic and semantic
conflicts increase. No system can force users to communicate perfectly, and no system can detect semantic conflicts. So there's no
point in being lulled into a false sense of security that alocking system will somehow prevent conflicts; in practice, locking seems
to inhibit productivity more than anything else.

Fundamental Concepts

When Locking Is Necessary
While the lock-madify-unlock model is considered generally harmful to collaboration, sometimes locking is appropriate.

The copy-modify-merge model is based on the assumption that files are contextually mergeable—that is, that the majority of the
filesin the repository are line-based text files (such as program source code). But for files with binary formats, such as artwork
or sound, it's often impossible to merge conflicting changes. In these situations, it really is necessary for users to take strict turns
when changing the file. Without serialized access, somebody ends up wasting time on changes that are ultimately discarded.

While Subversion is primarily acopy-modify-merge system, it still recognizesthe need to lock an occasional file, and thus provides
mechanisms for this. We discuss this feature in the section called “Locking”.

Version Control the Subversion Way

We've mentioned already that Subversion is a modern, network-aware version control system. As we described in the section
called “Version Control Basics’ (our high-level version control overview), a repository serves as the core storage mechanism for
Subversion's versioned data, and it's viaworking copies that users and their software programs interact with that data. In this section,
well begin to introduce the specific ways in which Subversion implements version control.

Subversion Repositories

Subversion implements the concept of aversion control repository much as any other modern version control system would. Unlikea
working copy, aSubversion repository isan abstract entity, able to be operated upon almost exclusively by Subversion'sown libraries
and tools. As most of a user's Subversion interactions involve the use of the Subversion client and occur in the context of aworking
copy, we spend the magjority of this book discussing the Subversion working copy and how to manipulate it. For the finer details of
the repository, though, check out Chapter 5, Repository Administration.

Revisions

A Subversion client commits (that is, communicates the changes made to) any number of files and directories as a single atomic
transaction. By atomic transaction, we mean simply this: either all of the changes are accepted into the repository, or none of themis.
Subversion tries to retain this atomicity in the face of program crashes, system crashes, network problems, and other users' actions.

Each time the repository accepts acommit, this creates a new state of the filesystem tree, called arevision. Each revision is assigned
a unigue natural number, one greater than the number assigned to the previous revision. The initial revision of a freshly created
repository is numbered 0 and consists of nothing but an empty root directory.

Figure 1.6, “Tree changes over time” illustrates a nice way to visualize the repository. Imagine an array of revision numbers, starting
at 0, stretching from left to right. Each revision number has a filesystem tree hanging below it, and each tree is a “snapshot” of the
way the repository looked after a commit.

Fundamental Concepts

Figure 1.6. Tree changes over time

Ly LeLsLy

F | D s
L /S LA

Global Revision Numbers

Unlike most version control systems, Subversion's revision numbers apply to the entire repository tree, not individual files. Each
revision number selects an entire tree, a particular state of the repository after some committed change. Another way to think
about it isthat revision N represents the state of the repository filesystem after the Nth commit. When Subversion userstalk about
“revision 5 of f 00. c¢,” they really mean “f 00. ¢ asit appearsin revision 5.” Notice that in genera, revisions N and M of afile
do not necessarily differ! Many other version control systems use per-file revision numbers, so this concept may seem unusual at
first. (Former CV S users might want to see Appendix B, Subversion for CVS Users for more details.)

Addressing the Repository

Subversion client programs use URLSs to identify versioned files and directories in Subversion repositories. For the most part, these
URL s use the standard syntax, allowing for server names and port numbers to be specified as part of the URL.

« http://svn.example.com/svn/project
* http://svn.example.com:9834/repos

Subversion repository URLs aren't limited to only the ht t p: / / variety. Because Subversion offers several different ways for its
clients to communicate with its servers, the URLs used to address the repository differ subtly depending on which repository access
mechanismisemployed. Table 1.1, “ Repository access URLS’ describes how different URL schemes map to the available repository
access methods. For more details about Subversion's server options, see Chapter 6, Server Configuration.

Table 1.1. Repository access URL s

Schema

Access method

file://ll

Direct repository access (on local disk)

Fundamental Concepts

Schema Access method

http:// Access via WebDAV protocol to Subversion-aware Apache
server

https:// Sameashtt p://, but with SSL encapsulation (encryption and
authentication)

svn:// Access via custom protocol to ansvnser ve server

svn+ssh:// Sameassvn: //, but through an SSH tunnel

Subversion's handling of URLSs has some notable nuances. For example, URLs containing thefi | e: // access method (used for
local repositories) must, in accordance with convention, have either a server name of | ocal host or no server name at all:

« file//lvar/svn/repos
« file://localhost/var/svn/repos

Also, users of the fil e:// scheme on Windows platforms will need to use an unofficialy “standard” syntax for accessing
repositories that are on the same machine, but on a different drive than the client's current working drive. Either of the two following
URL path syntaxes will work, where X is the drive on which the repository resides:

« file/lIX:Ivar/svn/repos
« file/lIX|/var/svnirepos

Note that a URL uses forward slashes even though the native (non-URL) form of a path on Windows uses backslashes. Also note
that whenusingthefil e: /// X| / form at the command line, you need to quote the URL (wrap it in quotation marks) so that the
vertical bar character is not interpreted as a pipe.

you attempt to view afil e: // URL in aregular web browser, it reads and displays the contents of the file at that
location by examining the filesystem directly. However, Subversion's resources exist in a virtual filesystem (see the
section called “ Repository Layer”), and your browser will not understand how to interact with that filesystem.

: Y ou cannot use Subversion'sfi | e: // URLsin aregular web browser the way typical fi |l e: // URLscan. When

The Subversion client will automatically encode URLSs as necessary, just like a web browser does. For example, the URL
http://host/path with space/ project/ espafia — which contains both spaces and upper-ASCII characters — will
be automatically interpreted by Subversion as if you'd provided ht t p: / / host / pat h%20wi t h9@20space/ pr oj ect/ espa
%C3%Bla. If the URL contains spaces, be sure to place it within quotation marks at the command line so that your shell treats the
whole thing as a single argument to the program.

There is one notable exception to Subversion's handling of URL s which also applies to its handling of local pathsin many contexts,
too. If thefinal path component of your URL or local path contains an at sign (@, you need to use a special syntax—described in the
section called “Peg and Operative Revisions’—in order to make Subversion properly address that resource.

In Subversion 1.6, a new caret (*) notation was introduced as a shorthand for “the URL of the repository's root directory”. For
example, you can usethe*/ t ags/ bi gsandwi ch/ to refer to the URL of the/ t ags/ bi gsandwi ch directory in the root of
the repository. Note that this URL syntax works only when your current working directory is a working copy—the command-line
client knows the repository's root URL by looking at the working copy's metadata. Also note that when you wish to refer precisely
to the root directory of the repository, you must do so using */ (with the trailing slash character), not merely *.

Subversion Working Copies

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files. You can edit these
files however you wish, and if they're source code files, you can compile your program from them in the usual way. Y our working
copy isyour own private work area: Subversion will never incorporate other people's changes, nor make your own changes available
to others, until you explicitly tell it to do so. Y ou can even have multiple working copies of the same project.

Fundamental Concepts

After you've made some changes to the files in your working copy and verified that they work properly, Subversion provides you
with commands to “publish” your changes to the other people working with you on your project (by writing to the repository). If
other people publish their own changes, Subversion provides you with commands to merge those changes into your working copy
(by reading from the repository).

A working copy also contains some extra files, created and maintained by Subversion, to help it carry out these commands. In
particular, each directory inyour working copy containsasubdirectory named . svn, also known astheworking copy'sadministrative
directory. The filesin each administrative directory help Subversion recognize which files contain unpublished changes, and which
files are out of date with respect to others work.

with the ASP.NET Web application framework disallowing access to directories whose names begin with a dot (.).
As aspecial consideration to usersin such situations, Subversion will instead use _svn asthe administrative directory
name if it finds a variable named SVN_ASP_DOT_NET_HACK in its operating environment. Throughout this book,
any referenceyou findto . svn appliesalsoto _svn when this“ASP.NET hack” isin use.

o While . svn is the de facto name of the Subversion administrative directory, Windows users may run into problems

How the working copy works

For each file in aworking directory, Subversion records (among other things) two essential pieces of information:

» What revision your working fileis based on (thisis called the file's working revision)

A timestamp recording when the local copy was last updated by the repository

Given thisinformation, by talking to the repository, Subversion can tell which of the following four states aworking fileisin:
Unchanged, and current

Thefileisunchanged in theworking directory, and no changesto that file have been committed to the repository sinceitsworking
revision. An svn commit of the file will do nothing, and an svn update of the file will do nothing.

Locally changed, and current

Thefile has been changed in the working directory, and no changes to that file have been committed to the repository since you
last updated. There arelocal changes that have not been committed to the repository; thus an svn commit of thefile will succeed
in publishing your changes, and an svn update of the file will do nothing.

Unchanged, and out of date

The file has not been changed in the working directory, but it has been changed in the repository. The file should eventually be
updated in order to make it current with the latest public revision. An svn commit of the file will do nothing, and an svn update
of thefile will fold the latest changes into your working copy.

Locally changed, and out of date

The file has been changed both in the working directory and in the repository. An svn commit of the file will fail with an “out-
of-date” error. Thefile should be updated first; an svn update command will attempt to merge the public changes with the local
changes. If Subversion can't complete the merge in a plausible way automatically, it leaves it to the user to resolve the conflict.

Fundamental working copy interactions

A typical Subversion repository often holdsthefiles (or source code) for several projects; usually, each project isasubdirectory inthe
repository'sfilesystemtree. In thisarrangement, auser'sworking copy will usually correspond to aparticul ar subtree of therepository.

For example, suppose you have arepository that contains two software projects, pai nt and cal c. Each project livesinits own top-
level subdirectory, as shown in Figure 1.7, “ The repository's filesystem”.

10

Fundamental Concepts

Figure 1.7. Therepository'sfilesystem

an
&

- Makefile

p

integer.c

button.c

L L

/Lol s

Makefile

fanvas.C

- brush.c

To get aworking copy, you must check out some subtree of the repository. (The term check out may sound like it has something to
do with locking or reserving resources, but it doesn't; it smply creates a working copy of the project for you.) For example, if you
check out / cal c, you will get aworking copy like this:

$ svn checkout http://svn.exanpl e.com repos/calc
A cal c/ Makefile

A calc/integer.c

A cal c/button.c

Checked out revision 56.

$1s -Acalc

Makefile button.c integer.c .svn/

$

The list of letter Asin the left margin indicates that Subversion is adding a number of items to your working copy. Y ou now have
a personal copy of the repository's/ cal ¢ directory, with one additional entry—. svn—uwhich holds the extra information needed
by Subversion, as mentioned earlier.

Suppose you make changesto but t on. c. Sincethe . svn directory remembers the file's original modification date and contents,
Subversion can tell that you've changed the file. However, Subversion does not make your changes public until you explicitly tell it
to. The act of publishing your changesis more commonly known as committing (or checking in) changes to the repository.

11

Fundamental Concepts

To publish your changes to others, you can use Subversion's svn commit command:

$ svn conmit button.c -m"Fixed a typo in button.c."
Sendi ng button.c

Transmitting file data .

Conmitted revision 57.

$

Now your changesto but t on. ¢ have been committed to the repository, with a note describing your change (namely, that you fixed
atypo). If another user checks out aworking copy of / cal c, shewill see your changesin the latest version of thefile.

Suppose you have a collaborator, Sally, who checked out a working copy of / cal ¢ at the same time you did. When you commit
your changeto but t on. c, Sally'sworking copy is left unchanged; Subversion modifies working copies only at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the svn update command. This will
incorporate your changes into her working copy, as well as any others that have been committed since she checked it out.

$ pwd

/ honme/ sal | y/ cal c

$1s -A

Makefile button.c integer.c .svn/
$ svn update

U button.c

Updated to revision 57.

$

The output from the svn update command indicates that Subversion updated the contents of but t on. c. Note that Sally didn't
need to specify which files to update; Subversion uses the information in the . svn directory as well as further information in the
repository, to decide which files need to be brought up to date.

Mixed-revision working copies

As agenera principle, Subversion tries to be as flexible as possible. One specia kind of flexibility is the ability to have a working
copy containing files and directories with a mix of different working revision numbers. Subversion working copies do not always
correspond to any single revision in the repository; they may contain filesfrom several different revisions. For example, suppose you
check out aworking copy from arepository whose most recent revision is 4:

calc/
Makefile:4
integer.c:4
button.c:4

At the moment, this working directory corresponds exactly to revision 4 in the repository. However, suppose you make a change
to but t on. ¢, and commit that change. Assuming no other commits have taken place, your commit will create revision 5 of the
repository, and your working copy will now look like this:

cac/
Makefile:4
integer.c:4
button.c:5

12

Fundamental Concepts

Supposethat, at thispoint, Sally commitsachangetoi nt eger . c, creating revision 6. If you use svn update to bring your working
copy up to date, it will look like this:

calc/
Makefile:6
integer.c:6
button.c:6

Sally'schangetoi nt eger . ¢ will appear inyour working copy, and your changewill still bepresentinbut t on. c. Inthisexample,
thetext of Makef i | e isidentical inrevisions4, 5, and 6, but Subversion will mark your working copy of Makef i | e with revision
6 to indicate that it is still current. So, after you do a clean update at the top of your working copy, it will generally correspond to
exactly one revision in the repository.

Updates and commits are separate

One of the fundamental rules of Subversionisthat a“push” action does not cause a*“ pull” nor vice versa. Just because you're ready to
submit new changes to the repository doesn't mean you're ready to receive changes from other people. And if you have new changes
still in progress, svn update should gracefully merge repository changes into your own, rather than forcing you to publish them.

The main side effect of this rule is that it means a working copy has to do extra bookkeeping to track mixed revisions as well as be
tolerant of the mixture. It's made more complicated by the fact that directories themselves are versioned.

For example, suppose you have aworking copy entirely at revision 10. Y ou edit thefilef 0o. ht m and then perform an svn commit,
which createsrevision 15 in the repository. After the commit succeeds, many new users would expect the working copy to be entirely
at revision 15, but that's not the case! Any number of changes might have happened in the repository between revisions 10 and 15.
The client knows nothing of those changes in the repository, since you haven't yet run svn update, and svn commit doesn't pull
down new changes. If, on the other hand, svn commit were to automatically download the newest changes, it would be possible to
set the entire working copy to revision 15—but then we'd be breaking the fundamental rule of “push” and “pull” remaining separate
actions. Therefore, the only safe thing the Subversion client can do is mark the one file—f 0o. ht M —asbeing at revision 15. The
rest of the working copy remains at revision 10. Only by running svn update can the latest changes be downloaded and the whole
working copy be marked as revision 15.

Mixed revisions are normal

Thefactis, every timeyou run svn commit your working copy ends up with some mixture of revisions. Thethingsyou just committed
aremarked as having larger working revisionsthan everything el se. After several commits (with no updatesin between), your working
copy will contain awhole mixture of revisions. Even if you'rethe only person using the repository, you will still see this phenomenon.
To examine your mixture of working revisions, use the svn status command with the - - ver bose (- v) option (see the section
called “ See an overview of your changes’ for more information).

Often, new users are completely unaware that their working copy contains mixed revisions. This can be confusing, because many
client commands are sensitive to the working revision of the item they're examining. For example, the svn log command is used to
display the history of changesto afile or directory (see the section called “ Generating a List of Historical Changes’). When the user
invokes this command on aworking copy object, he expects to see the entire history of the object. But if the object'sworking revision
isquite old (often because svh update hasn't been run in along time), the history of the older version of the object is shown.

Mixed revisions are useful

If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly backdate (or update to arevision older than
the one you already have) portions of your working copy to an earlier revision; you'll learn how to do that in Chapter 2, Basic Usage.
Perhaps you'd like to test an earlier version of a submodule contained in a subdirectory, or perhaps you'd like to figure out when a
bug first came into existence in aspecific file. Thisisthe “time machine” aspect of aversion control system—the feature that allows
you to move any portion of your working copy forward and backward in history.

13

Fundamental Concepts

Mixed revisions have limitations
However you make use of mixed revisions in your working copy, there are limitations to this flexibility.

First, you cannot commit the deletion of a file or directory that isn't fully up to date. If a newer version of the item exists in the
repository, your attempt to delete will be rejected to prevent you from accidentally destroying changes you've not yet seen.

Second, you cannot commit a metadata change to a directory unless it's fully up to date. Y ou'll learn about attaching “properties”
to items in Chapter 3, Advanced Topics. A directory's working revision defines a specific set of entries and properties, and thus
committing a property change to an out-of-date directory may destroy properties you've not yet seen.

Summary

We covered a number of fundamental Subversion conceptsin this chapter:
» Weintroduced the notions of the central repository, the client working copy, and the array of repository revision trees.

* We saw some simple examples of how two collaborators can use Subversion to publish and receive changes from one another,
using the “ copy-modify-merge” model.

» Wetalked ahit about the way Subversion tracks and manages information in aworking copy.

At this point, you should have a good idea of how Subversion works in the most general sense. Armed with this knowledge, you
should now be ready to move into the next chapter, which is a detailed tour of Subversion's commands and features.

14

Chapter 2. Basic Usage

Theory isuseful, but its application isjust plain fun. Let's move now into the details of using Subversion. By the time you reach the
end of this chapter, you will be able to perform al the tasks you need to use Subversion in a normal day's work. You'll start with
getting your files into Subversion, followed by an initial checkout of your code. We'll then walk you through making changes and
examining those changes. You'll also see how to bring changes made by others into your working copy, examine them, and work
through any conflicts that might arise.

This chapter will not provide exhaustive coverage of al of Subversion's commands—rather, it's a conversational introduction to the
most common Subversion tasksthat you'll encounter. This chapter assumes that you've read and understood Chapter 1, Fundamental
Conceptsand arefamiliar with the general model of Subversion. For acomplete reference of all commands, see Chapter 9, Subversion
Complete Reference.

Also, this chapter assumes that the reader is seeking information about how to interact in abasic fashion with an existing Subversion
repository. No repository means no working copy; no working copy means not much of interest in this chapter. There are many
Internet sites which offer free or inexpensive Subversion repository hosting services. Or, if you'd prefer to set up and administer your
own repositories, check out Chapter 5, Repository Administration. But don't expect the examples in this chapter to work without the
user having access to a Subversion repository.

Finally, any Subversion operation that contacts the repository over a network may potentially require that the user authenticate. For
the sake of simplicity, our examples throughout this chapter avoid demonstrating and discussing authentication. Be aware that if you
hope to apply the knowledge herein to an existing, real-world Subversion instance, you'll probably be forced to provide at least a
username and password to the server. See the section called “ Client Credentials’ for adetailed description of Subversion's handling
of authentication and client credentials.

Help!

It goes without saying that this book exists to be a source of information and assistance for Subversion users new and old.
Conveniently, though, the Subversion command-line is self-documenting, alleviating the need to grab a book off the shelf (wooden,
virtual, or otherwise). The svn help command is your gateway to that built-in documentation:

$ svn help

Subversi on command-line client, version 1.6.13.

Type 'svn hel p <subcomand>' for help on a specific subcomand.

Type 'svn --version' to see the program version and RA nodul es
or 'svn --version --quiet' to see just the version nunber.

Mbst subcommrands take file and/or directory argunents, recursing
on the directories. |If no argunents are supplied to such a
command, it recurses on the current directory (inclusive) by default.

Avai | abl e subcommuands:
add
bl ame (praise, annotate, ann)
cat

As described in the previous output, you can ask for help on a particular subcommand by running svn hel p SUBCOVIVAND.
Subversion will respond with the full usage message for that subcommand, including its syntax, options, and behavior:

$ svn help help
help (?, h): Describe the usage of this programor its subcomrands.

15

Basic Usage

usage: hel p [SUBCOVVAND. . .]

A obal options:
--username ARG : specify a usernane ARG
- - password ARG . specify a password ARG

Options and Switches and Flags, Oh My!

The Subversion command-line client has numerous command modifiers. Somefolksrefer to such thingsas* switches’ or “flags’—
in this book, we'll call them “options’. Y ou'll find the options supported by a given svn subcommand, plus a set of options which
are globally supported by all subcommands, listed near the bottom of the built-in usage message for that subcommand.

Subversion's options have two distinct forms: short options are asingle hyphen followed by asingleletter, and long options consist
of two hyphens followed by several letters and hyphens (e.g., -s and - -t hi s-i s-a-1 ong- opt i on, respectively). Every
option has at least one long format. Some, such asthe - - changel i st option, feature an abbreviated long-format alias (- - ¢l ,
in this case). Only certain options—generally the most-used ones—have an additional short format. To maintain clarity in this
book, we usually use the long form in code examples, but when describing options, if there's a short form, welll provide the long
form (to improve clarity) and the short form (to make it easier to remember). Use the form you're more comfortable with when
executing your own Subversion commands.

Many Unix-based distributions of Subversion include manual pages of the sort that can be invoked using the man program, but
those tend to carry only pointers to other sources of real help, such as the project's website and to the website which hosts this book.
Also, several companies offer Subversion help and support, too, usually viaamixture of web-based discussion forums and fee-based
consulting. And of course, the Internet holds a decade's worth of Subversion-related discussions just begging to be located by your
favorite search engine. Subversion help is never too far away.

Getting Data into Your Repository

Y ou can get new filesinto your Subversion repository in two ways. svn import and svn add. Welll discuss svn import now and will
discuss svn add later in this chapter when we review atypical day with Subversion.

Importing Files and Directories

The svn import command is a quick way to copy an unversioned tree of filesinto arepository, creating intermediate directories as
necessary. svn import doesn't require aworking copy, and your files areimmediately committed to the repository. Y ou typically use
this when you have an existing tree of files that you want to begin tracking in your Subversion repository. For example:

$ svn inport /path/to/ nytree \
http://svn. exanpl e. conf svn/ repo/ sone/ proj ect \
-m*"lnitial inmport”

Addi ng nytreel/ foo.c
Addi ng nytreel/ bar.c
Addi ng nytree/ subdir
Addi ng nmyt r ee/ subdi r/ quux. h

Commi tted revision 1.
$

The previous example copied the contents of the local directory myt r ee into the directory some/ pr oj ect intherepository. Note
that you didn't have to create that new directory first—svn import does that for you. Immediately after the commit, you can see
your datain the repository:

16

Basic Usage

$ svn list http://svn.exanpl e.conf svn/repo/ sone/ proj ect
bar.c

foo.c

subdir/

$

Note that after theimport is finished, the original local directory isnot converted into aworking copy. To begin working on that data
in aversioned fashion, you still need to create a fresh working copy of that tree.

Recommended Repository Layout

Subversion provides the ultimate flexibility in terms of how you arrange your data. Because it simply versions directories and files,
and because it ascribes no particular meaning to any of those objects, you may arrange the datain your repository in any way that you
choose. Unfortunately, this flexibility also means that it's easy to find yourself “lost without a roadmap” as you attempt to navigate
different Subversion repositories which may carry completely different and unpredictable arrangements of the data within them.

To counteract this confusion, we recommend that you follow arepository layout convention (established long ago, in the nascency of
the Subversion project itself) in which a handful of strategically named Subversion repository directories convey valuable meaning
about the data they hold. Most projects have a recognizable “main lin€’, or trunk, of development; some branches, which are
divergent copies of development lines; and some tags, which are named, stable snapshots of a particular line of development. So
we first recommend that each project have arecognizable project root in the repository, adirectory under which all of the versioned
information for that project—and only that project—Ilives. Secondly, we suggest that each project root containat r unk subdirectory
for the main development line, abr anches subdirectory in which specific branches (or collections of branches) will be created,
and at ags subdirectory in which specific tags (or collections of tags) will be created. Of coursg, if arepository houses only asingle
project, the root of the repository can serve as the project root, too.

Here are some examples:

$ svn list file:///var/svn/single-project-repo

trunk/

branches/

t ags/

$ svn list file:///var/svn/multi-project-repo
proj ect-A

proj ect - B

$ svn list file:///var/svn/multi-project-repo/project-A
trunk/

branches/

t ags/

$

We talk much more about tags and branches in Chapter 4, Branching and Merging. For details and some advice on how to set up
repositories when you have multiple projects, see the section called “Repository Layout”. Finally, we discuss project roots morein
the section called “Planning Y our Repository Organization”.

What's In a Name?

Subversion tries hard not to limit the type of data you can place under version control. The contents of files and property values
are stored and transmitted as binary data, and the section called “File Content Type” tells you how to give Subversion a hint that
“textual” operations don't make sense for a particular file. There are a few places, however, where Subversion places restrictions
on information it stores.

17

Basic Usage

Subversion internally handles certain bits of data—for example, property names, pathnames, and |og messages—as UTF-8-encoded
Unicode. Thisis not to say that al your interactions with Subversion must involve UTF-8, though. As a general rule, Subversion
clients will gracefully and transparently handle conversions between UTF-8 and the encoding system in use on your computer, if
such a conversion can meaningfully be done (which is the case for most common encodingsin use today).

In WebDAV exchanges and older versions of some of Subversion's administrative files, paths are used as XML attribute values,
and property namesin XML tag names. This means that pathnames can contain only legal XML (1.0) characters, and properties are
further limited to ASCI| characters. Subversion also prohibits TAB, CR, and LF charactersin path names to prevent paths from being
broken up in diffs or in the output of commands such as svn log or svn status.

While it may seem like a lot to remember, in practice these limitations are rarely a problem. As long as your locale settings
are compatible with UTF-8 and you don't use control characters in path names, you should have no trouble communicating
with Subversion. The command-line client adds an extra bit of help—to create “legally correct” versions for internal use it will
automatically escapeillegal path characters as needed in URL s that you type.

Creating a Working Copy

Most of the time, you will start using a Subversion repository by performing a checkout of your project. Checking out a directory
from arepository creates aworking copy of that directory on your local machine. Unless otherwise specified, this copy contains the
youngest (that is, most recently created or modified) versions of the directory and its children found in the Subversion repository:

$ svn checkout http://svn.exanpl e.conm svn/repo/trunk
A t r unk/ READVE

A trunk/ 1 NSTALL

A trunk/src/main.c

A trunk/ src/ header. h

Checked out revision 8810.
$

Although the preceding example checks out the trunk directory, you can just as easily check out a deeper subdirectory of arepository
by specifying that subdirectory's URL as the checkout URL :

$ svn checkout http://svn.exanple.con svn/repo/trunk/src
A src/main.c

A src/ header. h

A src/lib/hel pers.c

Checked out revision 8810.
$

Since Subversion uses a copy-modify-merge model instead of |ock-modify-unlock (seethe section called “Versioning Models’), you
canimmediately make changesto thefilesand directoriesin your working copy. Y our working copy isjust like any other collection of
filesand directories on your system. Y ou can edit thefilesinside it, renameit, even del ete the entire working copy and forget about it.

at will, but you must tell Subversion about everything else that you do. For example, if you want to copy or move an
item in aworking copy, you should use svn copy or svh move instead of the copy and move commands provided by
your operating system. We'll talk more about them later in this chapter.

Q While your working copy is “just like any other collection of files and directories on your system,” you can edit files

Unless you're ready to commit the addition of a new file or directory or changes to existing ones, there's no need to further notify
the Subversion server that you've done anything.

18

Basic Usage

What's with the .svn Directory?

Every directory in a working copy contains an administrative area—a subdirectory named . svn. Usually, directory listing
commands won't show this subdirectory, but it is nevertheless an important directory. Whatever you do, don't delete or change
anything in the administrative areal Subversion uses that directory and its contents to manage your working copy.

If you accidentally remove the . svn subdirectory, the easiest way to fix the problem is to remove the entire containing directory
(anormal system deletion, not svn delete), thenrunsvn updat e from a parent directory. The Subversion client will download
the directory you've deleted, with anew . svn areaaswell.

Noticethat in the previous pair of examples, Subversion chose to create aworking copy in adirectory named for the final component
of the checkout URL. This occurs only as a convenience to the user when the checkout URL isthe only bit of information provided
to the svn checkout command. Subversion's command-line client gives you additional flexibility, though, allowing you to optionally
specify the local directory name that Subversion should use for the working copy it creates. For example:

$ svn checkout http://svn.exanpl e.conm svn/repo/trunk ny-worki ng-copy
A ny- wor ki ng- copy/ READVE

A ny- wor ki ng- copy/ | NSTALL

A my-wor ki ng- copy/ src/ mai n. c

A my-wor ki ng- copy/ src/ header . h

Checked out revision 8810.
$

If the local directory you specify doesn't yet exist, that's okay—svn checkout will createit for you.

Basic Work Cycle

Subversion has numerous features, options, bells, and whistles, but on a day-to-day basis, odds are that you will use only a few of
them. In this section, we'll run through the most common things that you might find yourself doing with Subversion in the course
of aday'swork.

The typical work cycle looks like this:
1. Update your working copy. This involves the use of the svn update command.

2. Makeyour changes. The most common changes that you'll make are edits to the contents of your existing files. But sometimesyou
need to add, remove, copy and move files and directories—the svn add, svn delete, svn copy, and svn move commands handle
those sorts of structural changes within the working copy.

3. Review your changes. The svn status and svn diff commands are critical to reviewing the changes you've made in your working
copy.

4. Fix your mistakes. Nobody's perfect, so as you review your changes, you may spot something that's not quite right. Sometimes
the easiest way to fix a mistake is start al over again from scratch. The svn revert command restores a file or directory to its
unmodified state.

5. Resolve any conflicts (merge others changes). In the time it takes you to make and review your changes, others might have made
and published changes, too. Y ou'll want to integrate their changes into your working copy to avoid the potential out-of-dateness
scenarios when you attempt to publish your own. Again, the svn update command is the way to do this. If this results in local
conflicts, you'll need to resolve those using the svn resolve command.

19

Basic Usage

6. Publish (commit) your changes. The svn commit command transmits your changes to the repository where, if they are accepted,
they create the newest versions of all the things you modified. Now others can see your work, too!

Update Your Working Copy

When working on a project that is being modified via multiple working copies, you'll want to update your working copy to receive
any changes committed from other working copies since your last update. These might be changesthat other members of your project
team have made, or they might simply be changes you've made yourself from a different computer. To protect your data, Subversion
won't alow you commit new changes to out-of-date files and directories, so it's best to have the latest versions of all your project's
files and directories before making new changes of your own.

Use svn update to bring your working copy into sync with the latest revision in the repository:

$ svn update

U foo.c

U bar.c

Updated to revision 2.
$

In this case, it appears that someone checked in modifications to both f 00. ¢ and bar . ¢ since the last time you updated, and
Subversion has updated your working copy to include those changes.

When the server sends changes to your working copy via svn update, a letter code is displayed next to each item to let you know
what actions Subversion performed to bring your working copy up to date. To find out what these letters mean, run svn hel p
updat e or see svn update (up).

Make Your Changes

Now you can get to work and make changes in your working copy. Y ou can make two kinds of changes to your working copy: file
changes and tree changes. Y ou don't need to tell Subversion that you intend to change afile; just make your changes using your text
editor, word processor, graphics program, or whatever tool you would normally use. Subversion automatically detects which files
have been changed, and in addition, it handles binary files just as easily as it handles text files—and just as efficiently, too. Tree
changes are different, and involve changesto a directory's structure. Such changes include adding and removing files, renaming files
or directories, and copying files or directories to new locations. For tree changes, you use Subversion operations to “schedule” files
and directories for removal, addition, copying, or moving. These changes may take place immediately in your working copy, but no
additions or removals will happen in the repository until you commit them.

Versioning Symbolic Links

On non-Windows platforms, Subversion is able to version files of the special type symbolic link (or “symlink”). A symlink isa
file that acts as a sort of transparent reference to some other abject in the filesystem, allowing programs to read and write to those
objects indirectly by performing operations on the symlink itself.

When a symlink is committed into a Subversion repository, Subversion remembers that the file was in fact a symlink, as well as
the object to which the symlink “points.” When that symlink is checked out to another working copy on a non-Windows system,
Subversion reconstructs a real filesystem-level symbolic link from the versioned symlink. But that doesn't in any way limit the
usability of working copieson systems such as Windowsthat do not support symlinks. On such systems, Subversion simply creates
aregular text file whose contents are the path to which the original symlink pointed. While that file can't be used as a symlink on
aWindows system, it also won't prevent Windows users from performing their other Subversion-related activities.

Hereis an overview of the five Subversion subcommands that you'll use most often to make tree changes:

20

Basic Usage

svn add FQOO

Use this to schedule the file, directory, or symbolic link FOOto be added to the repository. When you next commit, FOO will
become a child of its parent directory. Note that if FOOisadirectory, everything underneath FOOwill be scheduled for addition.
If you want only to add FQOitself, passthe - - dept h=enpt y option.

svn del ete FOO

Use this to schedule the file, directory, or symboalic link FOO to be deleted from the repository. If FOOis afile or link, it is
immediately deleted from your working copy. If FOOis a directory, it is not deleted, but Subversion schedules it for deletion.
When you commit your changes, FOOwill be entirely removed from your working copy and the reposi tory.1

svn copy FOO BAR

Create anew item BAR as a duplicate of FOOand automatically schedule BAR for addition. When BAR is added to the repository
on the next commit, its copy history is recorded (as having originally come from FOO). svn copy does not create intermediate
directories unless you passthe - - par ent s option.

svn nove FOO BAR
This command is exactly the same asrunning svnh copy FOO BAR; svn del ete FOO. Thatis, BARis scheduled for
addition as a copy of FOO, and FOO is scheduled for removal. svn move does not create intermediate directories unless you
passthe - - par ent s option.

svn nkdir FOO

This command is exactly the sasme asrunning nkdi r FOO, svn add FOQO. That is, anew directory named FOOis created
and scheduled for addition.

Changing the Repository Without a Working Copy

Subversion does offer ways to immediately commit tree changesto the repository without an explicit commit action. In particular,
specific uses of svn mkdir, svn copy, svn move, and svn delete can operate directly on repository URLs as well as on working
copy paths. Of course, as previously mentioned, svn import aways makes direct changes to the repository.

There are pros and cons to performing URL -based operations. One obvious advantage to doing so is speed: sometimes, checking
out a working copy that you don't already have solely to perform some seemingly simple action is an overbearing cost. A
disadvantage is that you are generally limited to asingle, or single type of, operation at atime when operating directly on URLSs.
Finally, the primary advantage of aworking copy isin its utility as a sort of “staging area’ for changes. Y ou can make sure that
the changes you are about to commit make sensein the larger scope of your project before committing them. And, of course, these
staged changes can be as complex or as a simple as they need to be, yet result in but a single new revision when committed.

Review Your Changes

Once you've finished making changes, you need to commit them to the repository, but before you do so, it's usually a good idea to
take alook at exactly what you've changed. By examining your changes before you commit, you can compose a more accurate log
message (a human-readable description of the committed changes stored alongside those changes in the repository). Y ou may also
discover that you've inadvertently changed a file, and that you need to undo that change before committing. Additionally, thisisa
good opportunity to review and scrutinize changes before publishing them. Y ou can see an overview of the changes you've made by
using the svn status command, and you can dig into the details of those changes by using the svn diff command.

10f course, nothi ng isever totally deleted from the repository—just from its HEAD revision. Y ou may continue to access the deleted item in previous revisions. Should
you desire to resurrect the item so that it is again present in HEAD, see the section called “ Resurrecting Deleted Items’.

21

Basic Usage

Look Ma! No Network!

Y ou can use the commands svn status, svn diff, and svn revert without any network access even if your repository is across
the network. This makes it easy to manage and review your changes-in-progress when you are working offline or are otherwise
unable to contact your repository over the network.

Subversion does this by keeping private caches of pristine, unmodified versions of each versioned file inside its working copy
administrative areas. This alows Subversion to report—and revert—Ilocal modifications to those files without network access.
This cache (called the text-base) also allows Subversion to send the user's local modifications during a commit to the server as
a compressed delta (or “difference”) against the pristine version. Having this cache is a tremendous benefit—even if you have a
fast Internet connection, it's generally much faster to send only afile's changes rather than the whole file to the server.

See an overview of your changes

To get an overview of your changes, use the svn status command. You'll probably use svn status more than any other Subversion
command.

also reports the status of your local changes, most CV'S users have grown accustomed to using cvs update to report
their changes. In Subversion, the update and status reporting facilities are completely separate. See the section called
“Distinction Between Status and Update” for more details.

0 Because the cvs status command's output was so noisy, and because cvs update not only performs an update, but

If yourunsvn st at us at the top of your working copy with no additional arguments, it will detect and report all file and tree
changes you've made.

$ svn status

? scratch.c

A stuff/ | oot

A stuff/l oot/ new. c
D stuff/old.c

M bar.c

©“

In its default output mode, svn status prints seven columns of characters, followed by several whitespace characters, followed by
afile or directory name. The first column tells the status of afile or directory and/or its contents. Some of the most common codes
that svn status displays are:

? item

Thefile, directory, or symbolic link i t emis not under version control.
Aitem

Thefile, directory, or symbolic link i t emhas been scheduled for addition into the repository.
Citem

Thefilei t emisin astate of conflict. That is, changes received from the server during an update overlap with local changes
that you have in your working copy (and weren't resolved during the update). Y ou must resolve this conflict before committing
your changes to the repository.

Ditem

Thefile, directory, or symbolic link i t emhas been scheduled for deletion from the repository.

22

Basic Usage

Mitem
The contents of thefilei t emhave been modified.

If you pass a specific path to svn status, you get information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also hasa- - ver bose (- v) option, which will show you the status of every item in your working copy, even if it has
not been changed:

$ svn status -v

M 44 23 sally README
44 30 sally | NSTALL
M 44 20 harry bar. c
44 18 ira stuff
44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
44 21 sally stuf f/things
A 0 ? ? stuf f/things/bloo.h

44 36 harry stuf f/things/gloo.c

Thisisthe “long form” output of svn status. The letters in the first column mean the same as before, but the second column shows
the working revision of theitem. Thethird and fourth columns show the revision in which theitem last changed, and who changed it.

None of the prior invocations to svn status contact the repository—they merely report what is known about the working copy items
based on the records stored in the working copy administrative area and on the timestamps and contents of modified files. But
sometimes it is useful to see which of the items in your working copy have been modified in the repository since the last time you
updated your working copy. For this, svn status offersthe - - show updat es (- u) option, which contacts the repository and adds
information about items that are out of date:

$ svn status -u -v

M * 44 23 sally READVE
M 44 20 harry bar.c
* 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuff/things/bloo.h
St at us agai nst revi sion: 46

Notice in the previous example the two asterisks: if you were to run svn updat e at this point, you would receive changes to
README and t r out . c. Thistells you some very useful information—because one of those items is also one that you have locally
modified (the file README), you'll need to update and get the servers changes for that file before you commit, or the repository will
reject your commit for being out of date. We discuss thisin more detail later.

svn status can display much more information about the files and directories in your working copy than we've shown here—for an
exhaustive description of svn status and itsoutput, runsvn hel p st at us or see svn status (stat, st).

Examine the details of your local modifications

Another way to examine your changes is with the svn diff command, which displays differencesin file content. When you run svn
di ff at the top of your working copy with no arguments, Subversion will print the changes you've made to human-readable files
in your working copy. It displays those changes in unified diff format, a format which describes changes as “hunks’ (or “snippets’)

23

Basic Usage

of afile's content where each line of text is prefixed with a single-character code: a space, which means the line was unchanged; a
minus sign (-), which means the line was removed from the file; or aplus sign (+), which meansthe line was added to thefile. In the
context of svn diff, those minus-sign- and plus-sign-prefixed lines show how the lines looked before and after your modifications,
respectively.

Here's an example:

$ svn diff
| ndex: bar.c

--- bar.c (revision 3)
+++ bar.c (working copy)
@a»-1,7 +1,12 @@

+#i ncl ude <sys/types. h>
+#i ncl ude <sys/stat. h>
+#i ncl ude <uni std. h>

+

+#i ncl ude <stdio. h>

int main(void) {

- printf("Sixty-four slices of Anmerican Cheese...\n");
+ printf("Sixty-five slices of Anmerican Cheese...\n");
return O;

}

| ndex: README

--- README (revision 3)

+++ README (wor ki ng copy)
@m-193,3 +193,4 @@

+Note to self: pick up laundry.

I ndex: stuff/fish.c

--- stuff/fish.c (revision 1)

+++ stuff/fish.c (working copy)
-Welcome to the file known as 'fish'.
-Information on fish will be here soon.

I ndex: stuff/things/bloo.h

--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe

+t hi ngs about bl oo.

The svn diff command producesthis output by comparing your working files against its pristine text-base. Files scheduled for addition
aredisplayed asfilesin which every line was added; files scheduled for deletion are displayed asif every linewasremoved from those
files. The output from svn diff is compatible with the patch program. The patch program reads and applies patch files (or “ patches”),
which are files that describe differences made to one or more files. Because of this, you can share the changes you've made in your
working copy with someone el se without first committing those changes by creating apatch file from the redirected output of svn diff:

24

Basic Usage

$ svn diff > patchfile
$

Subversion usesitsinternal diff engine, which produces unified diff format, by default. If you want diff output in a different format,
specify an external diff program using - - di f f - cnd and pass any additional flags that it needs via the - - ext ensi ons (- x)
option. For example, you might want Subversion to defer its difference calculation and display to the GNU diff program, asking
that program to print local modifications made to the file f 0o. ¢ in context diff format (another flavor of difference format) while
ignoring changes made only to the case of the letters used in the file's contents:

$ svn diff --diff-cmd /usr/bin/diff -x "-i" foo.c

Fix Your Mistakes

Suppose while viewing the output of svn diff you determine that all the changes you made to a particular file are mistakes. Maybe
you shouldn't have changed the file at all, or perhaps it would be easier to make different changes starting from scratch. Y ou could
edit the file again and unmake all those changes. Y ou could try to find a copy of how the file looked before you changed it, and then
copy its contents atop your modified version. Y ou could attempt to apply those changesto the file again in reverse using pat ch -
R. And there are probably other approaches you could take.

Fortunately in Subversion, undoing your work and starting over from scratch doesn't require such acrobatics. Just use the svn revert
command:

$ svn status README
M README

$ svn revert README
Reverted ' READVE'

$ svn status README
$

In this example, Subversion has reverted the file to its premodified state by overwriting it with the pristine version of the file cached
in the text-base area. But note that svn revert can undo any scheduled operation—for example, you might decide that you don't want
to add anew file after all:

$ svn status newfile.txt

? newfile.txt
$ svn add newfile.txt
A newfile.txt

$ svn revert newfile.txt
Reverted 'newfile.txt'
$ svn status newfile.txt
? newfile.txt

$

Or perhaps you mistakenly removed afile from version control:

$ svn status README
$ svn del et e README
D README

$ svn revert README

25

Basic Usage

Reverted ' READVE
$ svn status READVE
$

Thesvn revert command offers salvation for imperfect people. It can save you huge amounts of time and energy that would otherwise
be spent manually unmaking changes or, worse, disposing of your working copy and checking out a fresh one just to have a clean
slate to work with again.

Resolve Any Conflicts

Weve dready seen how svn st at us - u can predict conflicts, but dealing with those conflictsis still something that remains to
be done. Conflicts can occur any time you attempt to merge or integrate (in a very genera sense) changes from the repository into
your working copy. By now you know that svn update creates exactly that sort of scenario—that command'svery purposeisto bring
your working copy up to date with the repository by merging all the changes made since your last update into your working copy.
So how does Subversion report these conflicts to you, and how do you deal with them?

Supposeyou run svn updat e and you see this sort of interesting output:

$ svn update

U | NSTALL

G READVE

Conflict discovered in "bar.c'.

Sel ect: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options:

The U (which stands for “Updated”) and G(for “merGed”) codes are no cause for concern; those files cleanly absorbed changes from
the repository. A file marked with U contains no local changes but was updated with changes from the repository. One marked with
Ghad local changes to begin with, but the changes coming from the repository didn't overlap with those local changes.

It's the next few lines which are interesting. First, Subversion reports to you that in its attempt to merge outstanding server changes
into the file bar . c, it has detected that some of those changes clash with local modifications you've made to that file in your
working copy but have not yet committed. Perhaps someone has changed the sameline of text you a so changed. Whatever the reason,
Subversion instantly flags this file as being in a state of conflict. It then asks you what you want to do about the problem, allowing
you to interactively choose an action to take toward resolving the conflict. The most commonly used options are displayed, but you
can see all of the options by typing s:

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options: s

(e) edit - change nerged file in an editor
(df) diff-full - show all changes made to nerged file
(r) resolved - accept nerged version of file

(dc) display-conflict - show all conflicts (ignoring merged version)

(nt) mne-conflict - accept ny version for all conflicts (sane)

(tc) theirs-conflict - accept their version for all conflicts (samne)

(nf) mne-full - accept ny version of entire file (even non-conflicts)
(tf) theirs-full - accept their version of entire file (sane)

26

Basic Usage

(p) postpone - mark the conflict to be resolved |ater
(1) Tlaunch - launch external tool to resolve conflict
(s) show all - show this |ist

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options:
Let's briefly review each of these options before we go into detail on what each option means.
(e) edit
Open thefile in conflict with your favorite editor, as set in the environment variable EDI TOR.
(df) diff-full
Display the differences between the base revision and the conflicted fileitself in unified diff format.

(r) resolved

After editing afile, tell svn that you've resolved the conflicts in the file and that it should accept the current contents—basically
that you've “resolved” the conflict.

(dc) display-conflict
Display all conflicting regions of the file, ignoring changes which were successfully merged.
(nc) mne-conflict

Discard any newly received changes from the server which conflict with your local changes to the file under review. However,
accept and merge all non-conflicting changes received from the server for that file.

(tc) theirs-conflict

Discard any local changes which conflict with incoming changes from the server for the file under review. However, preserve
all non-conflicting local changesto that file.

(rmf) mine-full

Discard all newly received changes from the server for the file under review, but preserve all your local changesfor that file.
(tf) theirs-full

Discard al your local changesto the file under review and use only the newly received changes from the server for that file.
(p) postpone

Leave thefilein aconflicted state for you to resolve after your update is complete.
(1) launch

Launch an external program to perform the conflict resolution. This requires a bit of preparation beforehand.
(s) show all

Show thelist of al possible commands you can use in interactive conflict resolution.

27

Basic Usage

WEe'l cover these commandsin more detail now, grouping them together by related functionality.

Viewing conflict differences interactively

Before deciding how to attack a conflict interactively, odds are that you'd like to see exactly what isin conflict. Two of the commands
available at the interactively conflict resolution prompt can assist you here. Thefirst isthe “ diff-full” command (df), which displays
all thelocal modifications to the file in question plus any conflict regions:

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options: df

--- .svn/text-base/ sandw ch. t xt. svn- base Tue Dec 11 21:33:57 2007
+++ .svn/tnmp/tenpfile. 32. tnmp Tue Dec 11 21:34:33 2007
@-1 +1,5 @

-Just buy a sandwi ch.
+<<<<<<< ., m ne

+Go pick up a cheesest eak.

+Bring ne a taco!
+>>>>>>> 132

The first line of the diff content shows the previous contents of the working copy (the BASE revision), the next content line is your
change, and the last content line is the change that was just received from the server (usually the HEAD revision).

The second command is similar to the first, but the “display-conflict” (dc) command shows only the conflict regions, not all the
changes made to the file. Additionaly, this command uses a slightly different display format for the conflict regions which allows
you to more easily compare the file's contents in those regions as they would appear in each of three states: original and unedited;
with your local changes applied and the server's conflicting changes ignored; and with only the server's incoming changes applied
and your local, conflicting changes reverted.

After reviewing the information provided by these commands, you're ready to move on to the next action.

Resolving conflict differences interactively

There are severa different ways to resolve conflicts interactively—two of which allow you to selectively merge and edit changes,
the rest of which alow you to simply pick aversion of the file and move along.

If you wish to choose some combination of your local changes, you can use the “edit” command (e) to manually edit the file with
conflict markersin atext editor (configured per the instructions in the section called “Using External Editors’). After you've edited
thefile, if you're satisfied with the changes you've made, you can tell Subversion that the edited fileisno longer in conflict by using
the “resolve’” command (r).

Regardless of what your local Unix snob will likely tell you, editing the file by hand in your favorite text editor is a somewhat [ow-
tech way of remedying conflicts (see the section called “Merging conflicts by hand” for awalkthrough). For this reason, Subversion
providesthe*“launch” resolution command (I) tofireup afancy graphical mergetool instead (seethe section called “ External merge”).

If you decidethat you don't need to merge any changes, but just want to accept oneversion of thefileor the other, you can either choose
your changes (ak.a. “mine”) by using the “mine-full” command (nf) or choose theirs by using the “theirs-full” command (t f).

Finally, thereisalso apair of compromise options available. The “mine-conflict” (nt) and “theirs-conflict” (t ¢) commands instruct
Subversion to select your local changes or the server's incoming changes, respectively, as the “winner” for al conflicts in the file.

28

Basic Usage

But, unlike the “mine-full” and “theirs-full” commands, these commands preserve both your local changes and changes received
from the server in regions of the file where no conflict was detected.

Postponing conflict resolution

This may sound like an appropriate section for avoiding marital disagreements, but it's actually still about Subversion, so read on. If
you're doing an update and encounter a conflict that you're not prepared to review or resolve, you can type p to postpone resolving
aconflict on afile-by-file basis when you run svn updat e. If you know in advance that you don't want to resolve any conflicts
interactively, you can pass the - - non- i nt eracti ve option to svn update, and any file in conflict will be marked with a C
automatically.

The C (for “Conflicted”) means that the changes from the server overlapped with your own, and now you have to manually choose
between them after the update has completed. When you postpone a conflict resolution, svn typically does three thingsto assist you
in noticing and resolving that conflict;

 Subversion prints a C during the update and remembers that the file isin a state of conflict.

« If Subversion considers the file to be mergeable, it places conflict markers—special strings of text that delimit the “sides’ of the
conflict—into the file to visibly demonstrate the overlapping areas. (Subversion uses the svn: m ne-t ype property to decide
whether afileis capable of contextual, line-based merging. See the section called “File Content Type” to learn more.)

* For every conflicted file, Subversion places three extra unversioned filesin your working copy:
fil ename. m ne

Thisisthe file asit existed in your working copy before you began the update process. It contains any local modifications
you had made to the file up to that point. (If Subversion considers the file to be unmergeable, the . mi ne fileisn't created,
since it would be identical to the working file.)

fil enane. r OLDREV

Thisisthefileasit existed in the BASE revision—that is, the unmodified revision of thefile in your working copy before you
began the update process—where OLDREYV is that base revision number.

fil enane. r NEWREV

Thisisthe file that your Subversion client just received from the server via the update of your working copy, where NEWREV
corresponds to the revision number to which you were updating (HEAD, unless otherwise requested).

For example, Sally makes changesto thefilesandwi ch. t xt , but does not yet commit those changes. Meanwhile, Harry commits
changes to that samefile. Sally updates her working copy before committing and she gets a conflict, which she postpones:

$ svn update

Conflict discovered in 'sandw ch.txt".

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

C sandw ch. t xt

Updated to revision 2.

Summary of conflicts:

Text conflicts: 1

$1s -1

sandw ch. t xt

sandwi ch. t xt. m ne

sandwi ch. txt.r1l

29

Basic Usage

sandw ch. txt.r2

At this point, Subversion will not allow Sally to commit thefile sandwi ch. t xt until the three temporary files are removed:

$ svn commit -m"Add a few nore things"
svn: Conmit failed (details follow):
svn: Aborting commt: '/hone/sally/svn-work/sandwi ch.txt' remains in conflict

If you've postponed a conflict, you need to resolve the conflict before Subversion will allow you to commit your changes. Y ou'll do
this with the svn resolve command and one of several argumentsto the - - accept option.

If you want to choose the version of the file that you last checked out before making your edits, choose the base argument.
If you want to choose the version that contains only your edits, choose the i ne- f ul | argument.

If you want to choose the version that your most recent update pulled from the server (and thus discarding your edits entirely), choose
thet hei rs-ful I argument.

However, if you want to pick and choose from your changes and the changes that your update fetched from the server, merge the
conflicted text “by hand” (by examining and editing the conflict markers within the file) and then choose the wor ki ng argument.

svn resolve removes the three temporary files and accepts the version of the file that you specified with the - - accept option, and
Subversion no longer considersthe file to be in a state of conflict:

$ svn resol ve --accept working sandwi ch. t xt
Resol ved conflicted state of 'sandw ch. txt'

Merging conflicts by hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little practice, it can become as easy
asfalling off abike.

Here's an example. Due to a miscommunication, you and Sally, your collaborator, both edit the file sandwi ch. t xt at the same
time. Sally commits her changes, and when you go to update your working copy, you get a conflict and you're going to have to edit
sandwi ch. t xt toresolve the conflict. First, let'stake alook at thefile:

$ cat sandwi ch.txt
Top piece of bread
Mayonnai se

Lettuce

Tomat o

Pr ovol one

<<<<<<< ., m ne

Sal am

Mort adel | a
Prosciutto

Sauer kr aut

Gilled Chicken
S>S>S>S>S>S> 2

Creole Miustard

Bott om pi ece of bread

30

Basic Usage

The strings of less-than signs, equals signs, and greater-than signs are conflict markers and are not part of the actual datain conflict.
You generally want to ensure that those are removed from the file before your next commit. The text between the first two sets of
markers is composed of the changes you made in the conflicting area:

<<<<<<< . m ne
Sal am

Mort adel | a
Prosciutto

Sauer kr aut
Gilled Chicken
>S>>>>>> 12

Usually you won't want to just del ete the conflict markersand Sally's changes—she's going to be awfully surprised when the sandwich
arrivesand it'snot what shewanted. Thisiswhereyou pick up the phone or walk acrossthe office and explain to Sally that you can't get
sauerkraut from an Italian deli.2 Once you've agreed on the changes you will commit, edit your file and remove the conflict markers:

Top piece of bread
Mayonnai se

Lettuce

Tomat o

Pr ovol one

Sal am

Mort adel | a

Prosciutto

Creole Miustard

Bott om pi ece of bread

Now use svn resolve, and you're ready to commit your changes:

$ svn resolve --accept working sandw ch. t xt
Resol ved conflicted state of 'sandw ch.txt'
$ svn commit -m "Go ahead and use ny sandwi ch, discarding Sally's edits."

Note that svn resolve, unlike most of the other commands we deal with in this chapter, requires that you explicitly list any filenames
that you wish to resolve. In any case, you want to be careful and use svn r esolve only when you're certain that you've fixed the conflict
in your file—once the temporary files are removed, Subversion will let you commit the file even if it still contains conflict markers.

If you ever get confused while editing the conflicted file, you can always consult the three files that Subversion creates for you in
your working copy—including your file as it was before you updated. You can even use a third-party interactive merging tool to
examine those three files.

Discarding your changes in favor of a newly fetched revision

If you get aconflict and decide that you want to throw out your changes, youcanrunsvn resol ve --accept theirs-full
CONFLI CTED- PATH and Subversion will discard your edits and remove the temporary files:

2And if you ask them for it, they may very well ride you out of town on arail.

31

Basic Usage

$ svn update

Conflict discovered in 'sandw ch.txt".

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

C sandw ch. t xt

Updated to revision 2.

Summary of conflicts:

Text conflicts: 1

$ I's sandwich. *

sandwi ch. txt sandwi ch.txt.mne sandwich.txt.r2 sandw ch.txt.rl

$ svn resolve --accept theirs-full sandw ch. txt

Resol ved conflicted state of 'sandw ch. txt'

$

Punting: using svn revert

If you decide that you want to throw out your changes and start your edits again (whether this occurs after a conflict or anytime),
just revert your changes:

$ svn revert sandw ch. t xt
Reverted ' sandw ch. t xt'

$ |'s sandwich. *

sandwi ch. t xt

$

Note that when you revert a conflicted file, you don't have to use svn resolve.

Commit Your Changes

Finally! Y our editsarefinished, you'vemerged all changesfrom the server, and you're ready to commit your changesto therepository.

The svn commit command sends all of your changesto the repository. When you commit a change, you need to supply alog message
describing your change. Y our log message will be attached to the new revision you create. If your log message is brief, you may wish
to supply it on the command line using the - - message (- m option:

$ svn commit -m "Corrected nunber of cheese slices."
Sendi ng sandwi ch. t xt

Transmitting file data .

Comritted revision 3.

However, if you've been composing your log message in some other text file as you work, you may want to tell Subversion to get
the message from that file by passing its filename asthe value of the- - f i | e (- F) option:

$ svn commit -F | ognsg
Sendi ng sandwi ch. t xt
Transmitting file data .
Committed revision 4.

If youfail to specify either the- - message (-myor--fi | e (- F) option, Subversion will automatically launch your favorite editor
(seetheinformation on edi t or - cnd in the section called “ Config”) for composing alog message.

32

Basic Usage

your editor without saving changes. If you've already saved your commit message, simply delete all thetext, save again,

If you're in your editor writing a commit message and decide that you want to cancel your commit, you can just quit
o} and then abort:

$ svn commit
Waiting for Enacs...Done

Log nessage unchanged or not specified
(a)bort, (c)ontinue, (e)dit

a

$

The repository doesn't know or care whether your changes make any sense as awhole; it checks only to make sure nobody else has
changed any of the same files that you did when you weren't looking. If somebody has done that, the entire commit will fail with a
message informing you that one or more of your files are out of date:

$ svn commit -m "Add another rule"

Sendi ng rul es.txt

svn: Commit failed (details follow):

svn: File '/sandwich.txt' is out of date

(Theexact wording of thiserror message depends on the network protocol and server you'reusing, but theideaisthe samein all cases.)
At this point, you need to run svn updat e, deal with any merges or conflicts that result, and attempt your commit again.

That covers the basic work cycle for using Subversion. Subversion offers many other features that you can use to manage your
repository and working copy, but most of your day-to-day use of Subversion will involve only the commands that we've discussed
so far in this chapter. We will, however, cover afew more commands that you'll use fairly often.

Examining History

Your Subversion repository is like a time machine. It keeps a record of every change ever committed and allows you to explore
this history by examining previous versions of files and directories as well as the metadata that accompanies them. With a single
Subversion command, you can check out the repository (or restore an existing working copy) exactly asit was at any date or revision
number in the past. However, sometimes you just want to peer into the past instead of going into it.

Several commands can provide you with historical data from the repository:
svn diff

Shows line-level details of a particular change
svn log

Shows you broad information: log messages with date and author information attached to revisions and which paths changed
in each revision

svn cat
Retrieves afile asit existed in aparticular revision number and displays it on your screen
svn list

Displaysthefilesin adirectory for any given revision

33

Basic Usage

Examining the Details of Historical Changes

We've aready seen svn diff before—it displays file differences in unified diff format; we used it to show the local modifications
made to our working copy before committing to the repository.

Infact, it turns out that there are three distinct uses of svn diff:
» Examining local changes
» Comparing your working copy to the repository

« Comparing repository revisions
Examining local changes

Asweveseen,invokingsvn di f f withno optionswill compareyour working filesto the cached “ pristine” copiesinthe. svn area:

$ svn diff
| ndex: rul es.txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@-1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in noderation
-Chew wi th your nouth open
+Chew wi th your mouth cl osed
+Li sten when ot hers are speaking
$

Comparing working copy to repository

If asingle- - r evi si on (- r) number is passed, your working copy is compared to the specified revision in the repository:

$ svn diff -r 3 rules.txt
I ndex: rul es. txt

--- rules.txt (revision 3)
+++ rul es. txt (working copy)
@@-1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in noderation
-Chew with your nouth open
+Chew wi th your mouth cl osed
+Li sten when ot hers are speaking
$

Comparing repository revisions

If two revision numbers, separated by a colon, are passed via- - r evi si on (- r), the two revisions are directly compared:

34

Basic Usage

$ svn diff -r 2:3 rules.txt
| ndex: rul es.txt

--- rules.txt (revision 2)
+++ rules.txt (revision 3)
@@-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate I ce Cream
+Freedom = Responsibility
Everything in noderation
Chew wit h your nouth open
$

A more convenient way of comparing one revision to the previousrevisionisto usethe - - change (- ¢) option:

$ svn diff -c 3 rules.txt
| ndex: rul es.txt

--- rules.txt (revision 2)
+++ rules.txt (revision 3)
@-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate | ce Cream
+Freedom = Responsibility
Everything in noderation
Chew with your nouth open
$

Lastly, you can compare repository revisions even when you don't have a working copy on your local machine, just by including
the appropriate URL on the command line:
$ svn diff -c 5 http://svn.exanpl e. conl repos/exanpl e/trunk/text/rul es.txt

é.

Generating a List of Historical Changes

To find information about the history of afile or directory, use the svn log command. svn log will provide you with arecord of who
made changes to afile or directory, at what revision it changed, the time and date of that revision, and—if it was provided—the log
message that accompanied the commit:

$ svn | og

r3 | sally | 2008-05-15 23:09:28 -0500 (Thu, 15 May 2008) | 1 line
Added include |lines and corrected # of cheese slices.

r2 | harry | 2008-05-14 18:43:15 -0500 (\Wed, 14 May 2008) | 1 line

Added mai n() nethods.

35

r1 | sally | 2008-05-10 19:50:31 -0500 (Sat, 10 May 2008) | 1 line

Initial inport

Note that the log messages are printed in reverse chronological order by default. If you wish to see a different range of revisionsin
aparticular order or just asingle revision, passthe- - r evi si on (- r) option:

Table2.1. Common log requests

Command Description

svn log -r 5:19 Display logs for revisions 5 through 19 in chronological order

svn log -r 19:5 Display logs for revisions 5 through 19 in reverse chronological
order

svn log -r 8 Display logs for revision 8 only

You can aso examine the log history of asinglefile or directory. For example:

$ svn log foo.c

$ svn log http://foo.conl svn/trunk/code/foo.c

These will display log messages only for those revisions in which the working file (or URL) changed.

Why Does svn log Not Show Me What | Just Committed?

If you make a commit and immediately typesvn | og with no arguments, you may notice that your most recent commit doesn't
show up in the list of log messages. Thisis due to a combination of the behavior of svn commit and the default behavior of svn
log. First, when you commit changes to the repository, svn bumps only the revision of files (and directories) that it commits,
so usually the parent directory remains at the older revision (See the section called “Updates and commits are separate” for an
explanation of why). svn log then defaults to fetching the history of the directory at its current revision, and thus you don't see
the newly committed changes. The solution here is to either update your working copy or explicitly provide a revision humber
to svn log by using the- - r evi si on (- r) option.

If you want even more information about a file or directory, svn log also takes a - - ver bose (- v) option. Because Subversion
allows you to move and copy files and directories, it is important to be able to track path changes in the filesystem. So, in verbose
mode, svn log will include alist of changed pathsin arevision in its output:

$ svnlog -r 8 -v
r8 | sally | 2008-05-21 13:19:25 -0500 (Wed, 21 May 2008) | 1 line
Changed pat hs:

M /trunk/ code/ foo.c

M /trunk/ code/ bar. h

A /trunk/ code/ doc/ READVE

Frozzl ed the sub-space wi nch.

36

svn log also takes a- - qui et (- q) option, which suppresses the body of the log message. When combined with - - ver bose (-
V), it gives just the names of the changed files.

Why Does svn log Give Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

$ svn log -r 2

At first glance, this seems like an error. But recall that while revisions are repository-wide, svn log operates on a path in the
repository. If you supply no path, Subversion usesthe current working directory asthe default target. Asaresult, if you're operating
in a subdirectory of your working copy and attempt to see the log of a revision in which neither that directory nor any of its
children was changed, Subversion will show you an empty log. If you want to see what changed in that revision, try pointing svn
log directly at the topmost URL of your repository, asinsvn log -r 2 ~/.

Browsing the Repository

Using svn cat and svn list, you can view various revisions of files and directories without changing the working revision of your
working copy. In fact, you don't even need aworking copy to use either one.

svn cat

If you want to examine an earlier version of afile and not necessarily the differences between two files, you can use svn cat:

$ svn cat -r 2 rules.txt

Be kind to others

Freedom = Chocol ate | ce Cream
Everything in noderation

Chew wi th your nouth open

$

You can also redirect the output directly into afile:

$ svn cat -r 2 rules.txt > rules.txt.v2
$

svn list

Thesvn list command showsyou what filesarein arepository directory without actually downloading the filesto your local machine:

$ svn list http://svn.exanpl e.conirepo/ project
READNVE

branches/

t ags/

37

Basic Usage

t runk/

If you want amore detailed listing, passthe - - ver bose (- v) flag to get output like this:

$ svn list -v http://svn.exanpl e. contf repo/ proj ect

23351 sally Feb 05 13:26 ./

20620 harry 1084 Jul 13 2006 README
23339 harry Feb 04 01:40 branches/
23198 harry Jan 23 17:17 tags/
23351 sally Feb 05 13:26 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who modified it, the size if it is afile,
the date it was last modified, and the item's name.

local working copy directory. After all, if you want alisting of your local directory, you could use just plain Is (or any

Thesvn |i st command with no arguments defaults to the repository URL of the current working directory, not the
° reasonable non-Unixy equivalent).

Fetching Older Repository Snapshots

In addition to all of the previous commands, you can usethe - - r evi si on (- r) option with svn update to take an entire working
copy “back intime”:2

Make the current directory look like it did in ri1729.
$ svn update -r 1729

won't work as you can't commit changes that you obtain from backdating a working copy if the changed files have

Many Subversion newcomers attempt to use the preceding svn update example to “undo” committed changes, but this
@} newer revisions. See the section called “ Resurrecting Deleted Items” for a description of how to “undo” a commit.

If you'd prefer to create a whole new working copy from an older snapshot, you can do so by modifying the typical svn checkout
command. Aswith svn update, you can providethe - - r evi si on (- r) option. But for reasons that we cover in the section called
“Peg and Operative Revisions’, you might instead want to specify the target revision as part of Subversion's expanded URL syntax.

Checkout the trunk fromr1729.
$ svn checkout http://svn.exanpl e.com svn/repo/trunk@?729 trunk-1729

Checkout the current trunk as it |ooked in r1729.
$ svn checkout http://svn.exanpl e.com svn/repo/trunk -r 1729 trunk-1729

Lastly, if you're building a release and wish to bundle up your files from Subversion but don't want those pesky . svn directories
in the way, you can use svn export to create alocal copy of all or part of your repository sans. svn directories. The basic syntax
of this subcommand isidentical to that of the svn checkout:

3see? Wetold you that Subversion was atime machine.

38

Basic Usage

Export the trunk fromthe | atest revision.

$ svn export http://svn.exanpl e.com svn/repo/trunk trunk-export

Export the trunk fromr1729.

$ svn export http://svn.exanple.com svn/repo/trunk@?729 trunk-1729

Export the current trunk as it |ooked in r1729.

$ svn export http://svn.exanple.com svn/repo/trunk -r 1729 trunk-1729
$

Sometimes You Just Need to Clean Up

Now that we've covered the day-to-day tasksthat you'll frequently use Subversion for, we'll review afew administrative tasksrelating
to your working copy.

Disposing of a Working Copy

Subversion doesn't track either the state or the existence of working copies on the server, so there's no server overhead to keeping
working copies around. Likewise, there's no need to let the server know that you're going to delete aworking copy.

If you're likely to use a working copy again, there's nothing wrong with just leaving it on disk until you're ready to use it again, at
which point all it takesis an svn updateto bring it up to date and ready for use.

However, if you're definitely not going to use aworking copy again, you can safely delete the entire thing using whatever directory
removal capabilities your operating system offers. We recommend that before you do soyou runsvn st at us and review any files
listed inits output that are prefixed with a? to make certain that they're not of importance.

Recovering from an Interruption

When Subversion modifiesyour working copy—either your files or its own administrative state—it triesto do so as safely aspossible.
Before changing the working copy, Subversion logsitsintentionsin aprivate “to-do list”, of sorts. Next, it performsthose actionsto
affect thedesired change, holding alock ontherelevant part of theworking copy whileit works. Thisprevents other Subversion clients
from accessing the working copy mid-change. Finally, Subversion releasesitslock and cleans upits private to-do list. Architecturally,
thisissimilar to ajournaled filesystem. If a Subversion operation isinterrupted (e.g, if the processiskilled or if the machine crashes),
the private to-do list remains on disk. This allows Subversion to return to that list later to complete any unfinished operations and
return your working copy to a consistent state.

This is exactly what svn cleanup does: it searches your working copy and runs any leftover to-do items, removing working copy
locks asit completes those operations. If Subversion ever tells you that some part of your working copy is“locked,” run svn cleanup
to remedy the problem. The svn status command will inform you about administrative locks in the working copy, too, by displaying
an L next to those locked paths:

$ svn status
L sonedi r
M sonedi r/ foo. c
$ svn cl eanup
$ svn status
M sonedi r/ foo. c

Don't confuse these working copy administrative locks with the user-managed locks that Subversion users create when using the
lock-modify-unlock model of concurrent version control; see the sidebar The Three Meanings of “Lock” for clarification.

39

Basic Usage

Dealing with Structural Conflicts

So far, we have only talked about conflicts at the level of file content. When you and your collaborators make overlapping changes
within the same file, Subversion forces you to merge those changes before you can commit.*

But what happens if your collaborators move or delete a file that you are still working on? Maybe there was a miscommunication,
and one person thinks the file should be deleted, while another person still wants to commit changes to the file. Or maybe your
collaborators did some refactoring, renaming files and moving around directories in the process. If you were still working on these
files, those modifications may need to be applied to the files at their new location. Such conflicts manifest themselves at the directory
tree structure level rather than at the file content level, and are known as tree conflicts.

Tree conflicts prior to Subversion 1.6

Prior to Subversion 1.6, tree conflicts could yield rather unexpected results. For example, if a file was locally modified, but had
been renamed in the repository, running svn update would make Subversion carry out the following steps:

* Check thefile to be renamed for local modifications.

» Deletethefileat itsold location, and if it had local modifications, keep an on-disk copy of thefile at the old location. This on-
disk copy now appears as an unversioned file in the working copy.

» Addthefile, asit existsin the repository, at its new location.

When this situation arises, there is the possibility that the user makes a commit without realizing that local modifications have
been left in anow-unversioned file in the working copy, and have not reached the repository. This gets more and more likely (and
tedious) if the number of files affected by this problemislarge.

Since Subversion 1.6, this and other similar situations are flagged as conflicts in the working copy.

Aswith textual conflicts, tree conflicts prevent a commit from being made from the conflicted state, giving the user the opportunity
to examine the state of the working copy for potential problems arising from the tree conflict, and resolving any such problems
before committing.

An Example Tree Conflict

Suppose a software project you were working on currently looked like this:

$ svn list -Rv svn://svn. exanpl e. com trunk/

4 harry Feb 06 14:34 ./

4 harry 23 Feb 06 14: 34 COPYI NG

4 harry 41 Feb 06 14: 34 Makefile

4 harry 33 Feb 06 14: 34 README

4 harry Feb 06 14: 34 code/

4 harry 51 Feb 06 14:34 code/bar.c
4 harry 124 Feb 06 14: 34 code/foo.c

Your collaborator Harry has renamed the file bar . ¢ to baz. c. You are still working on bar . ¢ in your working copy, but you
don't know yet that the file has been renamed in the repository.

The log message to Harry's commit looked like this:

“Wwell, you could mark files containing conflict markers as resolved and commit them, if you really wanted to. But thisisrarely donein practice.

40

Basic Usage

$ svn log -r5 svn://svn. exanpl e. cont trunk
r5 | harry | 2009-02-06 14:42:59 +0000 (Fri, 06 Feb 2009) | 2 lines
Changed pat hs:

M /trunk/ Makefile

D /trunk/code/ bar.c

A /trunk/code/baz.c (from/trunk/code/bar.c: 4)

Renanme bar.c to baz.c, and adjust Mkefile accordingly.

Thelocal changes you have made look like this:

$ svn diff
I ndex: code/foo.c

--- code/foo.c (revision 4)

+++ code/foo.c (working copy)
@-3,5 +3,5 @

int main(int argc, char *argv[])

{
printf("l don't like being noved around!\n%", bar());
- return O;
+ return 1;
}

I ndex: code/bar.c

--- code/bar.c (revision 4)

+++ code/ bar.c (working copy)

@-1,4 +1,4 @@

const char *bar(void)

{

- return "Me neither!\n";

+ return "Well, | do like being moved around!\n";

}

Y our changes are all based on revision 4. They cannot be committed because Harry has already checked in revision 5:

$ svn conmmit -m"Small fixes"

Sendi ng code/ bar. c

Sendi ng code/ foo.c

Transmitting file data ..

svn: Conmit failed (details follow):

svn: File not found: transaction '5-5', path '/trunk/code/bar.c'

At this point, you need to run svn update. Besides bringing our working copy up to date so that you can see Harry's changes, this
also flags atree conflict so you have the opportunity to evaluate and properly resolve it.

$ svn update

C code/ bar.c
A code/ baz. c
] Makefil e

41

Basic Usage

Updated to revision 5.
Summary of conflicts:
Tree conflicts: 1

In its output, svn update signifies tree conflicts using a capital C in the fourth output column. svn status reveals additional details
of the conflict:

$ svn status

M code/ foo.c
A + C codel/bar.c

> | ocal edit, incom ng del ete upon update
M code/ baz. c

Note how bar.c is automatically scheduled for re-addition in your working copy, which simplifies things in case you want to keep
thefile.

Because amove in Subversion isimplemented as a copy operation followed by a delete operation, and these two operations cannot
be easily related to one another during an update, all Subversion can warn you about is an incoming delete operation on a locally
modified file. This delete operation may be part of amove, or it could be a genuine delete operation. Talking to your collaborators,
or, asalast resort, svn log, is agood way to find out what has actually happened.

Both f 00. ¢ and baz. c arereported as locally modified in the output of svn status. Y ou made the changesto f 00. ¢ yourself, so
this should not be surprising. But why isbaz. ¢ reported as locally modified?

The answer is that despite the limitations of the move implementation, Subversion was smart enough to transfer your local editsin
bar. c intobaz. c:

$ svn diff code/baz.c
| ndex: code/baz.c

--- code/baz.c (revision 5)

+++ code/ baz.c (working copy)

@@-1,4 +1,4 @@

const char *bar(void)

{

- return "Me neither!\n";

+ return "Well, | do like being nmoved around!\n";

}

Local edits to the file bar . ¢, which is renamed during an update to baz. c, will only be applied to bar . c if your
working copy of bar . ¢ is based on the revision in which it was last modified before being moved in the repository.
Otherwise, Subversion will resort to retreiving baz. ¢ from the repository, and will not try to transfer your local
modificationsto it. You will have to do so manually.

svn info shows the URL s of the itemsinvolved in the conflict. The left URL shows the source of the local side of the conflict, while
the right URL shows the source of the incoming side of the conflict. These URLSs indicate where you should start searching the
repository's history for the change which conflicts with your local change.

$ svn info code/bar.c | tail -n 4

Tree conflict: local edit, incom ng del ete upon update
Source left: (file) ~/trunk/code/bar.c@
Source right: (none) ~/trunk/code/bar.c@®

42

Basic Usage

bar . ¢ isnow said to be the victim of atree conflict. It cannot be committed until the conflict is resolved:

$ svn commit -m "Small fixes"
svn: Conmit failed (details follow):
svn: Aborting commit: 'code/bar.c' remains in conflict

So how can this conflict be resolved? Y ou can either agree or disagree with the move Harry made. In case you agree, you can delete
bar . ¢ and mark the tree conflict as resolved:

$ svn delete --force code/bar.c

D code/ bar. c

$ svn resol ve --accept=working code/bar.c
Resol ved conflicted state of 'code/bar.c’
$ svn status

M code/ foo.c
M code/ baz. c
$ svn diff

| ndex: code/foo.c

--- code/foo.c (revision 5)
+++ code/foo.c (working copy)
@-3,5 +3,5 @@

int main(int argc, char *argv[])

{
printf("l don't |like being noved around!\n%", bar());
- return O;
+ return 1,
}

| ndex: code/baz.c

--- code/baz.c (revision 5)

+++ code/ baz.c (working copy)

@@-1,4 +1,4 @@

const char *bar(void)

{

- return "Me neither!\n";

+ return "Well, | do like being nmoved around!\n";

}

If you do not agree with the move, you can delete baz. ¢ instead, after making sure any changes made to it after it was renamed are
either preserved or not worth keeping. Do not forget to revert the changes Harry made to the Makef i | e. Since bar . ¢ isaready
scheduled for re-addition, there is nothing else left to do, and the conflict can be marked resolved:

$ svn delete --force code/ baz.c

D code/ baz. c

$ svn resol ve --accept=working code/bar.c
Resol ved conflicted state of 'code/bar.c’
$ svn status

M code/ f oo. ¢
A + code/ bar. c
D code/ baz. c
M Makefil e

43

Basic Usage

$ svn diff
| ndex: code/foo.c

--- code/foo.c (revision 5)
+++ code/ foo.c (working copy)
@-3,5 +3,5 @@
int main(int argc, char *argv[])
{
printf("l don't |like being noved around!\n%", bar());
- return O;
+ return 1,

}

| ndex: code/bar.c

--- code/bar.c (revision 5)

+++ code/ bar.c (working copy)

@@-1,4 +1,4 @@

const char *bar(void)

{

- return "Me neither!\n";

+ return "Well, | do like being nmoved around!\n";

}

| ndex: code/baz.c

--- code/baz.c (revision 5)
+++ code/ baz.c (working copy)
@_ 1! 4 +0! 0 @

-const char *bar (voi d)

-{

- return "Me neither!\n";

-}

I ndex: Makefile

--- Makefile (revision 5)

+++ Makefil e (working copy)

a-1,2 +1,2 @@

foo:

- $(CC) -0 $@code/foo.c codel/baz.c
+ $(CC) -0 $@code/foo.c codel/bar.c

In either case, you have now resolved your first tree conflict! You can commit your changes and tell Harry during tea break about
all the extrawork he caused for you.

Summary

Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with branching and merging (see
Chapter 4, Branching and Merging) and properties (see the section called “Properties’). However, you may want to take a moment
to skim through Chapter 9, Subversion Complete Reference to get an idea of al the different commands that Subversion has—and
how you can use them to make your work easier.

Chapter 3. Advanced Topics

If you've been reading this book chapter by chapter, from start to finish, you should by now have acquired enough knowledge to use
the Subversion client to perform the most common version control operations. Y ou understand how to check out a working copy
from a Subversion repository. You are comfortable with submitting and receiving changes using the svn commit and svn update
operations. Y ou've probably even developed areflex that causes you to run the svn status command almost unconsciously. For all
intents and purposes, you are ready to use Subversion in atypical environment.

But the Subversion feature set doesn't stop at “common version control operations.” It has other bits of functionality besides just
communicating file and directory changesto and from a central repository.

This chapter highlights some of Subversion's features that, while important, may not be part of the typical user's daily routine. It
assumes that you are familiar with Subversion's basic file and directory versioning capabilities. If you aren't, you'll want to first read
Chapter 1, Fundamental Concepts and Chapter 2, Basic Usage. Once you've mastered those basics and consumed this chapter, you'll
be a Subversion power user!

Revision Specifiers

As we described in the section called “Revisions’, revision numbers in Subversion are pretty straightforward—integers that keep
getting larger as you commit more changes to your versioned data. Still, it doesn't take long before you can no longer remember
exactly what happened in each and every revision. Fortunately, the typical Subversion workflow doesn't often demand that you supply
arbitrary revisionsto the Subversion operations you perform. For operations that do require arevision specifier, you generally supply
arevision number that you saw in a commit email, in the output of some other Subversion operation, or in some other context that
would give meaning to that particular number.

communities, and is both supported and encouraged by many Subversion-related tools. In most places where you would

Referring to revision numbers with an “r” prefix (r 314, for example) is an established practice in Subversion
:: /: specify a bare revision number on the command line, you may also use the r NNN syntax.

But occasionally, you need to pinpoint a moment in time for which you don't already have a revision number memorized or handy.
So besides the integer revision numbers, svn allows as input some additional forms of revision specifiers: revision keywords and
revision dates.

For example, you can use - r REV1: REV2 where REV1 is arevision keyword and REV2 is a revision number, or
where REV1 isadate and REV2 isarevision keyword, and so on. The individual revision specifiers are independently
evaluated, so you can put whatever you want on the opposite sides of that colon.

: The various forms of Subversion revision specifiers can be mixed and matched when used to specify revision ranges.

Revision Keywords

The Subversion client understands a number of revision keywords. These keywords can be used instead of integer arguments to the
--revi sion (-r) option, and are resolved into specific revision numbers by Subversion:

HEAD
The latest (or “youngest”) revision in the repository.
BASE

The revision number of anitem in aworking copy. If the item has been locally modified, thisrefers to the way the item appears
without those local modifications.

45

Advanced Topics

COW TTED

The most recent revision prior to, or equal to, BASE, in which an item changed.

PREV

Therevision immediately before the last revision in which an item changed. Technically, this boils down to COVM TTED-1.

As can be derived from their descriptions, the PREV, BASE, and COMM TTED revision keywords are used only when referring to a
working copy path—they don't apply to repository URLS. HEAD, on the other hand, can be used in conjunction with both of these
path types.

Here are some examples of revision keywords in action:

i T S T

#* W o

$
#
#

svn diff -r PREV: COWM TTED foo.c
shows the | ast change comitted to foo.c

svn log -r HEAD
shows | og nmessage for the |latest repository conmit

svn diff -r HEAD
conpares your working copy (with all of its |ocal changes) to the
| atest version of that tree in the repository

svn di ff -r BASE: HEAD f 0o. c
conpares the unnodified version of foo.c with the |atest version of
foo.c in the repository

svn | og -r BASE: HEAD
shows all conmit logs for the current versioned directory since you
| ast updat ed

svn update -r PREV foo.c
rewi nds the | ast change on foo.c, decreasing foo.c's working revision

svn diff -r BASE: 14 foo.c
conpares the unnodified version of foo.c with the way foo.c | ooked
in revision 14

Revision Dates

Revision numbers reveal nothing about the world outside the version control system, but sometimes you need to correlate a moment
inreal timewith amoment inversion history. To facilitatethis, the- - r evi si on (- r) option can also accept asinput date specifiers
wrapped in curly braces ({ and }). Subversion accepts the standard 1SO-8601 date and time formats, plus a few others. Here are
some examples.

B P h BB

svn checkout -r {2006-02-17}

svn checkout -r {15: 30}

svn checkout -r {15:30:00.200000}

svn checkout -r {"2006-02-17 15: 30"}

svn checkout -r {"2006-02-17 15:30 +0230"}
svn checkout -r {2006-02-17T15: 30}

46

Advanced Topics

svn checkout -r {2006-02-17T15: 30Z}

svn checkout -r {2006-02-17T15: 30-04: 00}
svn checkout -r {20060217T1530}

svn checkout -r {20060217T1530Z}

svn checkout -r {20060217T1530- 0500}

LR R]

as part of revision date specifiers. Certain shells may also take issue with the unescaped use of curly brances, too.

Keep in mind that most shellswill require you to, at aminimum, quote or otherwise escape any spacesthat areincluded
:: /: Consult your shell's documentation for the requirements specific to your environment.

When you specify adate, Subversion resolvesthat date to the most recent revision of the repository as of that date, and then continues
to operate against that resolved revision number:

$ svn log -r {2006-11-28}

r12 | ira | 2006-11-27 12:31:51 -0600 (Mon, 27 Nov 2006) | 6 Iines

Is Subversion a Day Early?

If you specify a single date as a revision without specifying a time of day (for example 2006- 11- 27), you may think that
Subversion should give you the last revision that took place on the 27th of November. Instead, you'll get back a revision from
the 26th, or even earlier. Remember that Subversion will find the most recent revision of the repository as of the date you give.
If you give a date without a timestamp, such as2006- 11- 27, Subversion assumes atime of 00:00:00, so looking for the most
recent revision won't return anything on the 27th.

If you want to include the 27th in your search, you can either specify the 27th with thetime ({ " 2006- 11- 27 23:59"}), or
just specify the next day ({ 2006- 11- 28}).

Y ou can aso use arange of dates. Subversion will find all revisions between both dates, inclusive:

$ svn log -r {2006-11-20}:{2006- 11- 29}

called “Properties’), revision timestamps can be changed to represent complete falsifications of true chronology, or
even removed altogether. Subversion's ability to correctly convert revision dates into real revision numbers depends
on revision datestamps maintaining a sequential ordering—the younger the revision, the younger its timestamp. If this
ordering isn't maintained, you will likely find that trying to use datesto specify revision rangesin your repository doesn't
always return the data you might have expected.

° Since the timestamp of a revision is stored as an unversioned, modifiable property of the revision (see the section

Peg and Operative Revisions

We copy, move, rename, and completely replace files and directories on our computers all the time. And your version control
system shouldn't get in the way of your doing these things with your version-controlled files and directories, either. Subversion'sfile
management support is quite liberating, affording almost as much flexibility for versioned files as you'd expect when manipulating
your unversioned ones. But that flexibility means that across the lifetime of your repository, a given versioned object might have
many paths, and agiven path might represent several entirely different versioned objects. Thisintroduces acertain level of complexity
to your interactions with those paths and objects.

47

Advanced Topics

Subversionis pretty smart about noticing when an object's version history includes such “ changes of address.” For example, if you ask
for the revision history log of a particular file that was renamed last week, Subversion happily provides all those logs—the revision
in which the rename itself happened, plus the logs of relevant revisions both before and after that rename. So, most of the time, you
don't even have to think about such things. But occasionally, Subversion needs your help to clear up ambiguities.

The simplest example of this occurs when a directory or file is deleted from version control, and then a new directory or file is
created with the same name and added to version control. The thing you deleted and the thing you later added aren't the same thing.
They merely happen to have had the same path—/ t r unk/ obj ect , for example. What, then, does it mean to ask Subversion about
the history of / t r unk/ obj ect ? Are you asking about the thing currently at that location, or the old thing you deleted from that
location? Are you asking about the operations that have happened to all the objects that have ever lived at that path? Subversion
needs a hint about what you really want.

And thanks to moves, versioned object history can get far more twisted than even that. For example, you might have a directory
named concept , containing some nascent software project you've been toying with. Eventually, though, that project maturesto the
point that the idea seems to actually have some wings, so you do the unthinkable and decide to give the project a name.! Let's say
you called your software Frabnaggilywort. At this point, it makes sense to rename the directory to reflect the project's new name, so
concept isrenamedto f rabnaggi | ywor t . Life goes on, Frabnaggilywort releases a 1.0 version and is downloaded and used
daily by hordes of people aiming to improve their lives.

It'sanice story, really, but it doesn't end there. Entrepreneur that you are, you've already got another think in the tank. So you make
anew directory, concept , and the cycle begins again. In fact, the cycle begins again many times over the years, each time starting
with that old concept directory, then sometimes seeing that directory renamed as the idea cures, sometimes seeing it deleted when
you scrap the idea. Or, to get really sick, maybe you rename concept to something else for a while, but later rename the thing
back to concept for some reason.

In scenarios like these, attempting to instruct Subversion to work with these reused paths can be a little like instructing a motorist
in Chicago's West Suburbs to drive east down Roosevelt Road and turn left onto Main Street. In a mere 20 minutes, you can cross
“Main Street” in Wheaton, Glen Ellyn, and Lombard. And no, they aren't the same street. Our motorist—and our Subversion—need
alittle more detail to do the right thing.

Fortunately, Subversion allows you to tell it exactly which Main Street you meant. The mechanism used is called apeg revision, and
you provide these to Subversion for the sole purpose of identifying unique lines of history. Because at most one versioned object
may occupy a path at any given time—or, more precisely, in any one revision—the combination of a path and a peg revisionis all
that is needed to unambiguously identify a specific line of history. Peg revisions are specified to the Subversion command-line client
using at syntax, so called because the syntax involves appending an “at sign” (@ and the peg revision to the end of the path with
which the revision is associated.

But what of the - - r evi si on (- r) of which we've spoken so much in this book? That revision (or set of revisions) is called the
operative revision (or operative revision range). Once a particular line of history has been identified using a path and peg revision,
Subversion performs the requested operation using the operative revision(s). To map this to our Chicagoland streets analogy, if we
are told to go to 606 N. Main Street in Wheaton,” we can think of “Main Street” as our path and “Wheaton” as our peg revision.
These two pieces of information identify a unique path that can be traveled (north or south on Main Street), and they keep us from
traveling up and down the wrong Main Street in search of our destination. Now we throw in “606 N.” as our operative revision of
sorts, and we know exactly where to go.

Ly ou're not supposed to name it. Once you name it, you start getting attached to it.”—Mike Wazowski
2606 N. Main Street, Wheaton, llinois, is the home of the Wheaton History Center. It seemed appropriate....

48

Advanced Topics

The Peg Revision Algorithm

The Subversion command-line client performs the peg revision algorithm any time it needs to resolve possible ambiguitiesin the
paths and revisions provided to it. Here's an example of such an invocation:

$ svn command -r OPERATI VE- REV it em@EG REV

If OPERATI VE- REV isolder than PEG REV, the algorithm is as follows:

1. Locatei t emin the revision identified by PEG- REV. There can be only one such object.

2. Trace the object's history backwards (through any possible renames) to its ancestor in the revision OPERATI VE- REV.

3. Perform the requested action on that ancestor, wherever it is located, or whatever its name might be or might have been at
that time.

But what if OPERATI VE- REV isyounger than PEG- REV? Well, that adds some compl exity to the theoretical problem of locating
the path in OPERATI VE- REV, because the path's history could have forked multiple times (thanks to copy operations) between
PEG REV and OPERATI VE- REV. And that's not all—Subversion doesn't store enough information to performantly trace an
object's history forward, anyway. So the algorithm is alittle different:

1. Locatei t emin therevision identified by OPERATI VE- REV. There can be only one such object.
2. Tracethe object's history backward (through any possible renames) to its ancestor in the revision PEG- REV.

3. Verify that the object's location (path-wise) in PEG- REV isthe same as it isin OPERATI VE- REV. If that's the case, at least
the two locations are known to be directly related, so perform the requested action on the location in OPERATI VE- REV.
Otherwise, relatedness was not established, so error out with aloud complaint that no viable location was found. (Someday,
we expect that Subversion will be able to handle this usage scenario with more flexibility and grace.)

Note that even when you don't explicitly supply apeg revision or operative revision, they are till present. For your convenience,
the default peg revision is BASE for working copy items and HEAD for repository URLs. And when no operative revision is
provided, it defaults to being the same revision as the peg revision.

Say that long ago we created our repository, and in revision 1 we added our first concept directory, plus an | DEA file in that
directory talking about the concept. After severa revisionsin which real code was added and tweaked, we, in revision 20, renamed
thisdirectory tof r abnaggi | ywor t . By revision 27, we had anew concept, anew concept directory to hold it, and anew | DEA
file to describe it. And then five years and thousands of revisions flew by, just like they would in any good romance story.

Now, years|ater, we wonder what the | DEA filelooked like back in revision 1. But Subversion needs to know whether we are asking
about how the current file looked back in revision 1, or whether we are asking for the contents of whatever filelived at concept /
| DEAinrevision 1. Certainly those questions have different answers, and because of peg revisions, you can ask those questions. To
find out how the current | DEA file looked in that old revision, you run;

$ svn cat -r 1 concept/|DEA

svn: Unable to find repository location for 'concept/IDEA in revision 1

Of course, in this example, the current | DEA file didn't exist yet in revision 1, so Subversion gives an error. The previous command
is shorthand for alonger notation which explicitly lists a peg revision. The expanded notation is:

$ svn cat -r 1 concept/| DEA@ASE

49

Advanced Topics

svn: Unable to find repository |l ocation for 'concept/IDEA in revision 1
And when executed, it has the expected results.

The perceptive reader is probably wondering at this point whether the peg revision syntax causes problems for working copy paths
or URLsthat actually have at signs in them. After all, how does svn know whether news @L1 is the name of adirectory in my tree
or just asyntax for “revision 11 of news”? Thankfully, while svn will always assume the latter, thereis atrivial workaround. Y ou
need only append an at sign to the end of the path, such asnews @ 1@ svn cares only about the last at sign in the argument, and it
is not considered illegal to omit a literal peg revision specifier after that at sign. This workaround even applies to paths that end in
an at sign—you would usef i | enane@to talk about afilenamedfi | enanre@

Let's ask the other question, then—in revision 1, what were the contents of whatever file occupied the address concept s/ | DEA
at the time? We'll use an explicit peg revision to help us out.

$ svn cat concept/| DEA@

The idea behind this project is to cone up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ramfications, so
we need to enpl oy over-the-top input validation and data verification
nechani sns.

Notice that we didn't provide an operative revision this time. That's because when no operative revision is specified, Subversion
assumes a default operative revision that's the same as the peg revision.

As you can see, the output from our operation appears to be correct. The text even mentions frabbing naggily worts, so thisis
almost certainly the file that describes the software now called Frabnaggilywort. In fact, we can verify this using the combination
of an explicit peg revision and explicit operative revision. We know that in HEAD, the Frabnaggilywort project is located in
the f rabnaggi | ywor t directory. So we specify that we want to see how the line of history identified in HEAD as the path
frabnaggi | ywort/ | DEAlooked inrevision 1.

$ svn cat -r 1 frabnaggil ywort/ | DEAGHEAD

The idea behind this project is to cone up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ramfications, so
we need to enploy over-the-top input validation and data verification
mechani sns.

And the peg and operative revisions need not be so trivial, either. For example, say f r abnaggi | ywort had been deleted from
HEAD, but we know it existed in revision 20, and we want to see the diffs for its | DEA file between revisions 4 and 10. We can
use peg revision 20 in conjunction with the URL that would have held Frabnaggilywort's | DEA file in revision 20, and then use 4
and 10 as our operative revision range.

$ svn diff -r 4:10 http://svn.red-bean. coni projects/frabnaggi | ywort/| DEA@O
I ndex: frabnaggil ywort/| DEA

--- frabnaggil ywort/ | DEA (revision 4)

+++ frabnaggil ywort/ 1 DEA (revision 10)

@-1,5 +1,5 @@

-The idea behind this project is to cone up with a piece of software
-that can frab a naggily wort. Frabbing naggily worts is tricky

-busi ness, and doing it incorrectly can have serious ramfications, so
-we need to enploy over-the-top input validation and data verification

50

Advanced Topics

- mechani sms.

+The i dea behind this project is to cone up with a piece of
+client-server software that can renotely frab a naggily wort.
+Frabbi ng naggily worts is tricky business, and doing it incorrectly
+can have serious ranifications, so we need to enploy over-the-top
+i nput validation and data verification mechanisns.

Fortunately, most folks aren't faced with such complex situations. But when you are, remember that peg revisions are that extra hint
Subversion needs to clear up ambiguity.

Properties

We've already covered in detail how Subversion stores and retrieves various versions of files and directoriesin itsrepository. Whole
chapters have been devoted to thismost fundamental piece of functionality provided by thetool. And if the versioning support stopped
there, Subversion would still be complete from aversion control perspective.

But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding, modifying, and removing versioned
metadata on each of your versioned directories and files. We refer to this metadata as properties, and they can be thought of as
two-column tables that map property names to arbitrary values attached to each item in your working copy. Generally speaking,
the names and values of the properties can be whatever you want them to be, with the constraint that the names must contain only
ASCII characters. And the best part about these propertiesisthat they, too, are versioned, just like the textual contents of your files.
Y ou can modify, commit, and revert property changes as easily as you can file content changes. And the sending and receiving of
property changes occurs as part of your typical commit and update operations—you don't have to change your basic processes to
accommodate them.

such propertiesin use today, you should avoid creating custom properties for your own needs whose names begin with
this prefix. Otherwise, you run the risk that a future release of Subversion will grow support for a feature or behavior
driven by a property of the same name but with perhaps an entirely different interpretation.

: Subversion hasreserved the set of propertieswhose namesbeginwithsvn: asitsown. Whilethereare only ahandful of

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbitrary property names and values attached
to them, each revision as a whole may have arbitrary properties attached to it. The same constraints apply—human-readable names
and anything-you-want binary values. The main differenceisthat revision properties are not versioned. In other words, if you change
thevalueof, or delete, arevision property, there'sno way, within the scope of Subversion'sfunctionality, to recover the previousvalue.

Subversion has no particular policy regarding the use of properties. It asks only that you do not use property hames that begin with
the prefix svn: as that's the namespace that it sets aside for its own use. And Subversion does, in fact, use properties—both the
versioned and unversioned variety. Certain versioned properties have special meaning or effects when found on files and directories,
or they house a particular bit of information about the revisions on which they arefound. Certain revision properties are automatically
attached to revisions by Subversion's commit process, and they carry information about the revision. Most of these properties are
mentioned elsewhere in this or other chapters as part of the more general topics to which they are related. For an exhaustive list of
Subversion's predefined properties, see the section called “ Subversion Properties’.

it does not presume thereafter the existence of those properties, and neither should you or the tools you use to interact
with your repository. Revision properties can be deleted programmatically or viathe client (if allowed by the repository
hooks) without damaging Subversion's ability to function. So, when writing scripts which operate on your Subversion
repository data, do not make the mistake of assuming that any particular revision property exists on arevision.

: While Subversion automatically attaches properties (svn: dat e, svn: aut hor, svn: | og, and so on) to revisions,

In this section, we will examine the utility—both to users of Subversion and to Subversion itself—of property support. You'll learn
about the property-related svn subcommands and how property modifications affect your normal Subversion workflow.

51

Advanced Topics

Why Properties?

Just as Subversion uses properties to store extra information about thefiles, directories, and revisionsthat it contains, you might also
find properties to be of similar use. You might find it useful to have a place close to your versioned data to hang custom metadata
about that data.

Say you wish to design a web site that houses many digital photos and displays them with captions and a datestamp. Now, your set
of photos is constantly changing, so you'd like to have as much of this site automated as possible. These photos can be quite large,
so asis common with sites of this nature, you want to provide smaller thumbnail images to your site visitors.

Now, you can get this functionality using traditional files. That is, you can have your i magel23.j pg and an i magel123-

t hunbnai | . j pg sideby sidein adirectory. Or if you want to keep the filenames the same, you might have your thumbnailsin a
different directory, such ast hurbnai | s/ i nage123. j pg. You can also store your captions and datestampsin asimilar fashion,
again separated from the original image file. But the problem here is that your collection of files multiplies with each new photo
added to the site.

Now consider the same web site deployed in a way that makes use of Subversion's file properties. Imagine having a single image
file, i magel23. j pg, with properties set on that file that are named capt i on, dat est anp, and even t hunbnai | . Now your
working copy directory looks much more manageable—in fact, it looks to the casual browser like there are nothing but image files
init. But your automation scripts know better. They know that they can use svn (or better yet, they can use the Subversion language
bindings—see the section called “Using the APIS") to dig out the extra information that your site needs to display without having
to read an index file or play path manipulation games.

optimally carry large property values or large sets of propertieson agivenfile or directory. Subversion commonly holds
all the property names and values associated with asingleitem in memory at the sametime, which can cause detrimental
performance or failed operations when extremely large property sets are used.

: While Subversion places few restrictions on the names and values you use for properties, it has not been designed to

Custom revision properties are also frequently used. One common such use is a property whose value contains an issue tracker ID
with which therevision is associated, perhaps because the change made in that revision fixes abug filed in the tracker issue with that
ID. Other uses include hanging more friendly names on the revision—it might be hard to remember that revision 1935 was a fully
tested revision. But if there's, say, at est - r esul t s property on that revision with thevalueal | passi ng, that's meaningful
information to have. And Subversion allows you to easily do thisviathe- - wi t h- r evpr op option of the svn commit command:

$ svn commit -m"Fix up the last remining known regression bug." \
--with-revprop "test-results=all passing"

Sendi ng lib/crit_bits.c

Transmitting file data .

Conmmitted revision 912.

$

52

Advanced Topics

Searchability (or, Why Not Properties)

For all their utility, Subversion properties—or, more accurately, the available interfaces to them—have a major shortcoming:
whileit is asimple matter to set a custom property, finding that property later is awhole different ball of wax.

Trying to locate a custom revision property generally involves performing alinear walk across @l the revisions of the repository,
asking of each revision, “Do you have the property I'm looking for?” Usethe--wi t h-al | - r evpr ops option with the svn
log command's XML output mode to facilitate this search. Notice the presence of the custom revision property t estresul t s
in the following output:

$ svn log --with-all-revprops --xm lib/crit_bits.c
<?xm version="1.0"?>
<l og>
<l ogentry
revision="912">
<aut hor >harry</ aut hor >
<dat e>2011- 07-29T14: 47: 41. 1698947</ dat e>
<msg>Fi x up the last remaining known regressi on bug. </ nsg>
<r evprops>
<property
nane="t estresul ts">al |l passi ng</property>
</ revprops>
</l ogent ry>

Trying to find a custom versioned property is painful, too, and often involves a recursive svn propget across an entire working
copy. In your situation, that might not be as bad as a linear walk across all revisions. But it certainly leaves much to be desired in
terms of both performance and likelihood of success, especidly if the scope of your search would require a working copy from
the root of your repository.

For this reason, you might choose—especially in the revision property use case—to simply add your metadata to the revision's

log message using some policy-driven (and perhaps programmatically enforced) formatting that is designed to be quickly parsed
from the output of svn log. It is quite common to see the following in Subversion log messages.

| ssue(s): 122376, |21919
Revi ewed by: sally

This fixes a nasty segfault in the wort frabbing process

But here again lies some misfortune. Subversion doesn't yet provide alog message templating mechanism, which would go along
way toward helping users be consistent with the formatting of their log-embedded revision metadata.

Manipulating Properties

The svn program affords afew waysto add or modify file and directory properties. For properties with short, human-readable values,
perhaps the ssmplest way to add a new property is to specify the property name and value on the command line of the svn propset
subcommand:

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/button.c

53

Advanced Topics

property 'copyright' set on 'calc/button.c’
$

But we've been touting the flexibility that Subversion offers for your property values. And if you are planning to have a multiline
textual, or even binary, property value, you probably do not want to supply that value on the command line. So the svn propset
subcommand takesa- - f i | e (- F) option for specifying the name of afile that contains the new property value.

$ svn propset license -F /path/to/LI CENSE cal c/button.c
property 'license' set on 'calc/button.c’
$

There are some restrictions on the names you can use for properties. A property name must start with a letter, a colon (:), or an
underscore (_); after that, you can also use digits, hyphens (-), and periods (.).3

In addition to the propset command, the svn program supplies the propedit command. This command uses the configured editor
program (see the section called “Config”) to add or modify properties. When you run the command, svn invokes your editor program
on atemporary file that contains the current value of the property (or that is empty, if you are adding a new property). Then, you just
modify that value in your editor program until it represents the new value you wish to store for the property, save the temporary file,
and then exit the editor program. If Subversion detects that you've actually changed the existing value of the property, it will accept
that as the new property value. If you exit your editor without making any changes, no property modification will occur:

$ svn propedit copyright calc/button.c ### exit the editor without changes
No changes to property 'copyright' on 'calc/button.c'
$

We should note that, as with other svn subcommands, those related to properties can act on multiple paths at once. This enables you
to modify properties on whole sets of files with a single command. For example, we could have done the following:

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/*
property 'copyright' set on 'cal c/Makefile'

property 'copyright' set on 'calc/button.c’

property 'copyright' set on 'calc/integer.c'

$

All of this property adding and editing isn't really very useful if you can't easily get the stored property value. So the svn program
supplies two subcommands for displaying the names and values of properties stored on files and directories. The svn proplist
command will list the names of properties that exist on a path. Once you know the names of the properties on the node, you can
request their values individually using svn propget. This command will, given a property name and a path (or set of paths), print
the value of the property to the standard output stream.

$ svn proplist calc/button.c
Properties on 'calc/button.c’

copyri ght

i cense
$ svn propget copyright calc/button.c
(c) 2006 Red-Bean Software

There's even a variation of the proplist command that will list both the name and the value for al of the properties. Simply supply
the- - ver bose (- v) option.

81 you're familiar with XML, thisis pretty much the ASCII subset of the syntax for XML “Name”.

54

Advanced Topics

$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software
i cense

Copyright (c) 2006 Red-Bean Software. All rights reserved.

Redi stribution and use in source and binary forns, with or w thout
nodi fication, are permtted provided that the followi ng conditions
are net:

1. Redistributions of source code nmust retain the above copyri ght
notice, this list of conditions, and the recipe for Fitz's fanmous
red- beans-and-ri ce.

The last property-related subcommand is propdel. Since Subversion allows you to store properties with empty values, you can't
remove a property altogether using svn propedit or svn propset. For example, this command will not yield the desired effect:

$ svn propset |icense calc/button.c
property 'license' set on 'calc/button.c
$ svn proplist -v calc/button.c
Properties on 'calc/button.c'
copyri ght
(c) 2006 Red-Bean Software
license

$

Y ou need to use the propdel subcommand to delete properties altogether. The syntax is similar to the other property commands:

$ svn propdel license calc/button.c
property 'license' deleted from'calc/button.c'.
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software
$

Remember those unversioned revision properties? You can modify those, too, using the same svn subcommands that we just
described. Simply add the- - r evpr op command-line parameter and specify the revision whose property you wish to modify. Since
revisions are global, you don't need to specify atarget path to these property-related commands so long as you are positioned in a
working copy of the repository whose revision property you wish to modify. Otherwise, you can simply provide the URL of any path
in the repository of interest (including the repository's root URL). For example, you might want to replace the commit log message
of an existing revision.* If your current working directory is part of aworking copy of your repository, you can simply run the svn
propset command with no target path:

$ svn propset svn:log "* button.c: Fix a conpiler warning." -rl1ll --revprop

4Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness’ in commit log messages is perhaps the most common use case for the - - r evpr op option.

55

Advanced Topics

property 'svn:log' set on repository revision '11'
$

But even if you haven't checked out a working copy from that repository, you can still effect the property change by providing the
repository's root URL :

$ svn propset svn:log "* button.c: Fix a conpiler warning." -rl1l --revprop \
http://svn. exanpl e. coni r epos/ pr oj ect

property 'svn:log' set on repository revision '11'

$

Note that the ability to modify these unversioned properties must be explicitly added by the repository administrator (see the section
called “Commit Log Message Correction™). That's because the properties aren't versioned, so you run the risk of losing information
if you aren't careful with your edits. The repository administrator can set up methods to protect against this loss, and by default,
modification of unversioned propertiesis disabled.

identical, the former will allow them to see the current value of the property that they are about to change, which
helps them to verify that they are, in fact, making the change they think they are making. Thisis especially true when
modifying unversioned revision properties. Also, it is significantly easier to modify multiline property valuesin atext
editor than at the command line.

o Users should, where possible, use svn propedit instead of svn propset. While the end result of the commands is

Properties and the Subversion Workflow

Now that you are familiar with al of the property-related svn subcommands, let's see how property modifications affect the usual
Subversion workflow. As we mentioned earlier, file and directory properties are versioned, just like your file contents. As a resullt,
Subversion provides the same opportunities for merging—cleanly or with conflicts—someone else's modifications into your own.

Aswith file contents, your property changes are local modifications, made permanent only when you commit them to the repository
with svn commit. Y our property changes can be easily unmade, too—the svn revert command will restore your files and directories
to their unedited states—contents, properties, and all. Also, you can receive interesting information about the state of your file and
directory properties by using the svn status and svn diff commands.

$ svn status calc/button.c
M calc/button.c
$ svn diff calc/button.c
Property changes on: cal c/button.c

Name: copyri ght
+ (c) 2006 Red-Bean Software

$
Notice how the status subcommand displays Min the second column instead of the first. That is because we have modified the

propertieson cal ¢/ but t on. c, but not its textual contents. Had we changed both, we would have seen Min the first column, too.
(We cover svn statusin the section called “ See an overview of your changes”).

56

Advanced Topics

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by someone else. If you update your
working copy directory and receive property changes on aversioned object that clash with your own, Subversion will report that
the object isin a conflicted state.

$ svn update calc

M cal c/ Makefile.in
Conflict for property 'linecount' discovered on
Sel ect: (p) postpone, (df) diff-full, (e) edit,

(s) show all options: p

C cal c/button.c

Updated to revision 143.
Summary of conflicts:

Property conflicts: 1

$

Subversion will also create, in the same directory asthe conflicted object, afilewitha. pr ej extension that containsthe details of
the conflict. Y ou should examinethe contents of thisfile so you can decide how to resolvethe conflict. Until the conflict isresolved,
you will see aCinthe second column of svn status output for that object, and attemptsto commit your local modificationswill fail.

cal c/button.c'.

$ svn status calc

C cal c/button.c
? cal c/button. c. prej
$ cat calc/button.c.prej
Trying to change property 'linecount' from'1267' to '1301',
but property has been locally changed from'1267' to '1256'.
$

To resolve property conflicts, simply ensure that the conflicting properties contain the values that they should, and then use the
svn resolve --accept=wor king command to alert Subversion that you have manually resolved the problem.

Y ou might also have noticed the nonstandard way that Subversion currently displays property differences. Y ou can still use svn diff
and redirect its output to create a usable patch file. The patch program will ignore property patches—as arule, it ignores any noise
it can't understand. This does, unfortunately, mean that to fully apply a patch generated by svn diff, any property modifications will
need to be applied by hand.

Automatic Property Setting

Properties are a powerful feature of Subversion, acting as key components of many Subversion features discussed elsewhere in this
and other chapters—textual diff and merge support, keyword substitution, newline translation, and so on. But to get the full benefit
of properties, they must be set on the right files and directories. Unfortunately, that step can be easily forgotten in the routine of
things, especially since failing to set a property doesn't usually result in an obvious error (at least compared to, say, failing to add
afile to version control). To help your properties get applied to the places that need them, Subversion provides a couple of simple
but useful features.

Whenever you introduceafileto version control using the svn add or svnimport commands, Subversiontriesto assist by setting some
common file properties automatically. First, on operating systems whose filesystems support an execute permission bit, Subversion
will automatically set the svn: execut abl e property on newly added or imported files whose execute hit is enabled. (See the
section called “File Executability” later in this chapter for more about this property.)

Second, Subversion tries to determine the file's MIME type. If you've configured ami nme-t ypes-fi | es runtime configuration
parameter, Subversion will try to find a MIME type mapping in that file for your file's extension. If it finds such a mapping, it will

57

Advanced Topics

set your fileéssvn: m me- t ype property to the MIME typeit found. If no mapping file is configured, or no mapping for your file's
extension could be found, Subversion will fall back to its own very basic heuristic to determine whether the file contains nontextual
content. If so, it automatically setsthe svn: nmi ne-t ype property on that fileto appl i cati on/ oct et - st r eam(the generic
“thisisacollection of bytes” MIME type). Of course, if Subversion guessesincorrectly, or if youwishto setthesvn: m ne-t ype
property to something more precise—perhapsi mage/ png or appl i cati on/ x- shockwave- f | ash—you can awaysremove
or edit that property. (For more on Subversion's use of MIME types, see the section called “File Content Type” later in this chapter.)

heavy use of bytes which are outside the typical ASCII character byte range. As such, Subversion will tend to classify
such files as binary files, much to the chagrin of users who desire line-based differencing and merging, keyword
substitution, and other behaviors for those files.

: UTF-16 is commonly used to encode files whose semantic content is textual in nature, but the encoding itself makes

Subversion also provides, viaits runtime configuration system (see the section called “ Runtime Configuration Area’), amoreflexible
automatic property setting feature that allows you to create mappings of filename patternsto property names and values. Once again,
these mappings affect adds and imports, and can not only override the default MIME type decision made by Subversion during those
operations, but can also set additional Subversion or custom properties, too. For example, you might create a mapping that says that
anytime you add JPEG files—ones whose names match the pattern * . j pg—Subversion should automatically set thesvn: m ne-
t ype property on those files to i mage/ j peg. Or perhaps any files that match *. cpp should have svn: eol - styl e set to
native,andsvn: keywor ds settol d. Automatic property support is perhaps the handiest property-related tool in the Subversion
toolbox. See the section called “ Config” for more about configuring that support.

which all connecting clientswill automatically consider when operating on working copies checked out from that server.
Unfortunately, Subversion doesn't offer this feature. Administrators can use hook scripts to validate that the properties
added to and modified on files and directories match the administrator's preferred policies, rejecting commits which are
non-compliant in this fashion. (See the section called “Implementing Repository Hooks” for more about hook scripts.)
But there's no way to automatically dictate those preferences to Subversion clients beforehand.

File Portability

Fortunately for Subversion userswho routinely find themselves on different computerswith different operating systems, Subversion's
command-line program behaves almost identically on al those systems. If you know how to wield svn on one platform, you know
how to wield it everywhere.

: Subversion administrators commonly ask if it is possible to configure, on the server side, a set of property definitions

However, the sameis not always true of other general classes of software or of the actual files you keep in Subversion. For example,
on a Windows machine, the definition of a “text file” would be similar to that used on a Linux box, but with a key difference—
the character sequences used to mark the ends of the lines of those files. There are other differences, too. Unix platforms have
(and Subversion supports) symboalic links; Windows does not. Unix platforms use filesystem permission to determine executability;
Windows uses filename extensions.

Because Subversion isin no position to unite the whole world in common definitions and implementations of all of these things, the
best it can do is to try to help make your life simpler when you need to work with your versioned files and directories on multiple
computers and operating systems. This section describes some of the ways Subversion does this.

File Content Type

Subversion joins the ranks of the many applications that recognize and make use of Multipurpose Internet Mail Extensions (MIME)
content types. Besides being a general-purpose storage location for a file's content type, the value of the svn: m nme-t ype file
property determines some behavioral characteristics of Subversion itself.

58

Advanced Topics

Identifying File Types

Various programs on most modern operating systems make assumptions about the type and format of the contents of afile by
the file's name, specifically its file extension. For example, files whose namesendin . t xt are generally assumed to be human-
readable; that is, able to be understood by simple perusal rather than requiring complex processing to decipher. Files whose names
endin. png, onthe other hand, are assumed to be of the Portable Network Graphicstype—not human-readableat all, and sensible
only when interpreted by software that understands the PNG format and can render the information in that format asaraster image.

Unfortunately, some of those extensions have changed their meanings over time. When personal computers first appeared, afile
named README. DOC would have almost certainly been a plain-text file, just like today's . t xt files. But by the mid-1990s,
you could almost bet that a file of that name would not be a plain-text file at al, but instead a Microsoft Word document in a
proprietary, non-human-readable format. But this change didn't occur overnight—there was certainly a period of confusion for
computer users over what exactly they had in hand when they saw a. DOC file®

The popularity of computer networking cast still more doubt on the mapping between afile'snameand its content. Withinformation
being served across networks and generated dynamically by server-side scripts, there was often no real file per se, and therefore
no filename. Web servers, for example, needed some other way to tell browsers what they were downloading so that the browser
could do something intelligent with that information, whether that was to display the data using a program registered to handle
that datatype or to prompt the user for where on the client machine to store the downloaded data.

Eventually, astandard emerged for, among other things, describing the contents of adatastream. In 1996, RFC 2045 was published.
It was the first of five RFCs describing MIME. It describes the concept of media types and subtypes and recommends a syntax
for the representation of those types. Today, MIME media types—or “MIME types’—are used almost universally across email
applications, web servers, and other software as the de facto mechanism for clearing up the file content confusion.

For example, one of the benefits that Subversion typically provides is contextual, line-based merging of changes received from the
server during an update into your working file. But for files containing nontextual data, there is often no concept of a“line.” So, for
versioned fileswhose svn: m ne-t ype property is set to a nontextual MIME type (generally, something that doesn't begin with
t ext /, though there are exceptions), Subversion does not attempt to perform contextual merges during updates. Instead, any time
you have locally modified abinary working copy filethat isalso being updated, your fileisleft untouched and Subversion creates two
new files. Onefilehasa. ol dr ev extension and containsthe BASE revision of thefile. The other filehasa. newr ev extension and
contains the contents of the updated revision of the file. This behavior isreally for the protection of the user against failed attempts
at performing contextual merges on files that simply cannot be contextually merged.

unexpected behaviors with respect to other properties. For example, since the idea of line endings (and therefore, line-
ending conversion) makes no sense when applied to nontextual files, Subversion will prevent you from setting the
svn: eol - st yl e property on such files. This is obvious when attempted on a single file target—svn propset will
error out. But it might not be as clear if you perform arecursive property set, where Subversion will silently skip over
filesthat it deems unsuitable for a given property.

° The svn: m me-t ype property, when set to a value that does not indicate textual file contents, can cause some

Subversion provides a number of mechanisms by which to automatically set thesvn: m me- t ype property on aversionedfile. See
the section called “ Automatic Property Setting” for details.

Also, if the svn: mi me-t ype property is set, then the Subversion Apache module will use its value to populate the Cont ent -
t ype: HTTP header when responding to GET requests. This gives your web browser acrucial clue about how to display afile when
you use it to peruse your Subversion repository's contents.

File Executability

On many operating systems, the ability to execute a file as a command is governed by the presence of an execute permission bit.
This bit usually defaults to being disabled, and must be explicitly enabled by the user for each file that needs it. But it would be

5Y ou think that was rough? During that same era, WordPerfect also used . DOC for their proprietary file format's preferred extension!

59

Advanced Topics

a monumental hassle to have to remember exactly which filesin a freshly checked-out working copy were supposed to have their
executable hits toggled on, and then to have to do that toggling. So, Subversion providesthe svn: execut abl e property asaway
to specify that the executable bit for the file on which that property is set should be enabled, and Subversion honors that request when
populating working copies with such files.

This property has no effect on filesystems that have no concept of an executable permission hit, such as FAT32 and NTFS. Also,
although it has no defined values, Subversion will forceits valueto * when setting this property. Finally, this property isvalid only
on files, not on directories.

End-of-Line Character Sequences

Unless otherwise noted using a versioned file'ssvn: m me- t ype property, Subversion assumes the file contains human-readable
data. Generally speaking, Subversion uses this knowledge only to determine whether contextual difference reports for that file are
possible. Otherwise, to Subversion, bytes are bytes.

This means that by default, Subversion doesn't pay any attention to the type of end-of-line (EOL) markers used in your files.
Unfortunately, different operating systems have different conventions about which character sequences represent the end of aline of
textin afile. For example, the usual line-ending token used by software on the Windows platformisapair of ASCII control characters
—acarriage return (CR) followed by alinefeed (LF). Unix software, however, just usesthe LF character to denote the end of aline.

Not al of the varioustools on these operating systems understand filesthat contain line endingsin aformat that differsfrom the native
line-ending style of the operating system on which they are running. So, typically, Unix programs treat the CR character present in
Windows files as a regular character (usually rendered as *M), and Windows programs combine all of the lines of a Unix file into
one giant line because no carriage return-linefeed (or CRLF) character combination was found to denote the ends of the lines.

This sensitivity to foreign EOL markers can be frustrating for folks who share afile across different operating systems. For example,
consider a source code file, and developers that edit this file on both Windows and Unix systems. If al the developers always use
toolsthat preserve the line-ending style of the file, no problems occur.

But in practice, many common tools either fail to properly read afile with foreign EOL markers, or convert the file's line endings
to the native style when the file is saved. If the former is true for a developer, he has to use an external conversion utility (such as
dos2unix or its companion, unix2dos) to prepare the file for editing. The latter case requires no extra preparation. But both cases
result in afile that differs from the original quite literally on every line! Prior to committing his changes, the user has two choices.
Either he can use a conversion utility to restore the modified file to the same line-ending style that it was in before his edits were
made, or he can ssimply commit the file—new EOL markersand all.

The result of scenarios like these include wasted time and unnecessary modifications to committed files. Wasted time is painful
enough. But when commits change every line in afile, this complicates the job of determining which of those lines were changed in
anontrivial way. Where was that bug really fixed? On what line was a syntax error introduced?

The solution to this problem is the svn: eol - st yl e property. When this property is set to a valid value, Subversion uses it to
determine what special processing to perform on the file so that the file's line-ending style isn't flip-flopping with every commit that
comes from a different operating system. The valid values are:

native

This causes the file to contain the EOL markers that are native to the operating system on which Subversion was run. In other
words, if auser on a Windows machine checks out aworking copy that contains afilewith an svn: eol - st yl e property set
tonati ve, that filewill contain CRLF EOL markers. A Unix user checking out aworking copy that contains the same file will
see LF EOL markersin his copy of thefile.

Note that Subversion will actually store the file in the repository using normalized LF EOL markers regardless of the operating
system. Thisis basically transparent to the user, though.

5The Windows fi lesystems use file extensions (such as. EXE, . BAT, and . COM) to denote executable files.

60

Advanced Topics

CRLF

This causes the file to contain CRLF sequences for EOL markers, regardless of the operating system in use.
LF

This causes the file to contain LF characters for EOL markers, regardless of the operating system in use.
CR

This causes the file to contain CR characters for EOL markers, regardless of the operating system in use. Thisline-ending style
isnot very common.

Ignoring Unversioned Items

In any given working copy, thereisagood chance that alongside all those versioned filesand directories are other filesand directories
that are neither versioned nor intended to be. Text editorslitter directorieswith backup files. Software compilers generate intermediate
—or even final—files that you typically wouldn't bother to version. And users themselves drop various other files and directories
wherever they seefit, often in version control working copies.

It's ludicrousto expect Subversion working copiesto be somehow imperviousto thiskind of clutter and impurity. In fact, Subversion
counts it as a feature that its working copies are just typical directories, just like unversioned trees. But these not-to-be-versioned
files and directories can cause some annoyance for Subversion users. For example, because the svn add and svn import commands
act recursively by default and don't know which filesin a given tree you do and don't wish to version, it's easy to accidentally add
stuff to version control that you didn't mean to. And because svn status reports, by default, every item of interest in aworking copy
—including unversioned files and directories—its output can get quite noisy where many of these things exist.

So Subversion provides two ways for telling it which files you would prefer that it simply disregard. One of the ways involves the
use of Subversion's runtime configuration system (see the section called “Runtime Configuration Area”), and therefore appliesto all
the Subversion operations that make use of that runtime configuration—generally those performed on a particular computer or by a
particular user of a computer. The other way makes use of Subversion's directory property support and is more tightly bound to the
versioned tree itself, and therefore affects everyone who has a working copy of that tree. Both of the mechanisms use file patterns
(strings of literal and specia wildcard characters used to match against filenames) to decide which filesto ignore.

The Subversion runtime configuration system provides an option, gl obal - i gnor es, whose value is a whitespace-delimited
collection of file patterns. The Subversion client checks these patterns against the names of the files that are candidates for addition
to version control, aswell asto unversioned filesthat the svn status command notices. If any file's name matches one of the patterns,
Subversion will basically act asif the file didn't exist at all. Thisisreally useful for the kinds of files that you almost never want to
version, such as editor backup files such as Emacs * ~ and . * ~ files.

61

Advanced Topics

File Patterns in Subversion

File patterns (also called globsor shell wildcard patterns) are strings of charactersthat areintended to be matched against filenames,
typicaly for the purpose of quickly selecting some subset of similar files from a larger grouping without having to explicitly
name each file. The patterns contain two types of characters: regular characters, which are compared explicitly against potential
matches, and special wildcard characters, which are interpreted differently for matching purposes.

There are different types of file pattern syntaxes, but Subversion uses the one most commonly found in Unix systemsimplemented
asthef nmat ch system function. It supports the following wildcards, described here simply for your convenience:

?

Matches any single character

Matches any string of characters, including the empty string

Begins a character class definition terminated by] , used for matching a subset of characters

You can see this same pattern matching behavior at a Unix shell prompt. The following are some examples of patterns being
used for various things:

$1s ### the book sources

appa- qui ckstart. xnl ch06- server - confi gurati on. xm
appb-svn-for-cvs-users. xn chQ07- cust om zi ng- svn. xm
appc- webdav. xm ch08- enbeddi ng- svn. xni

book. xm ch09-ref erence. xm

ch0O0- pr ef ace. xni ch10-wor | d- peace-t hru-svn. xnl
chO1-f undanent al - concept s. xni copyright. xm

ch02- basi c- usage. xm foreword. xm

ch03- advanced- t opi cs. xni i mges/

chO04- br anchi ng- and- mer gi ng. xm i ndex. xnl

ch05-r eposi t ory-admi n. xm styl es. css

$ |Is ch* ### the book chapters

ch0O0- pr ef ace. xni ch06- server-configuration. xn
chO1-f undanent al - concept s. xni chOQ7- cust om zi ng- svn. xni
ch02- basi c- usage. xni ch08- enbeddi ng- svn. xm

ch03- advanced-t opi cs. xm ch09-r ef erence. xm

ch04- br anchi ng- and- ner gi ng. xm ch10-wor| d- peace-t hr u- svn. xni

ch05-r eposi t ory-admi n. xm

$ Is ch?0-* ### the book chapters whose nunbers end in zero

ch00- preface. xml chl10-worl d- peace-t hru-svn. xm

$ |'s chO[3578] -* ### the book chapters that M ke is responsible for
ch03- advanced- t opi cs. xni chOQ7- cust om zi ng- svn. xni

ch05-reposi tory-admnm n. xm ch08- enbeddi ng- svn. xm

$

File pattern matching is a bit more complex than what we've described here, but this basic usage level tends to suit the majority
of Subversion users.

When found on a versioned directory, the svn: i gnor e property is expected to contain a list of newline-delimited file patterns
that Subversion should use to determine ignorable objects in that same directory. These patterns do not override those found in the

62

Advanced Topics

gl obal - i gnor es runtime configuration option, but are instead appended to that list. And it's worth noting again that, unlike the
gl obal - i gnor es option, the patterns found in the svn: i gnor e property apply only to the directory on which that property is
set, and not to any of its subdirectories. The svn: i gnor e property is a good way to tell Subversion to ignore files that are likely
to be present in every user's working copy of that directory, such as compiler output or—to use an example more appropriate to this
book—the HTML, PDF, or PostScript files generated as the result of a conversion of some source DocBook XML files to a more
legible output format.

directories to version control. Once an object is under Subversion's control, the ignore pattern mechanisms no longer
apply toit. In other words, don't expect Subversion to avoid committing changes you've made to aversioned file smply
because that file's name matches an ignore pattern—Subversion always notices al of its versioned objects.

: Subversion's support for ignorable file patterns extends only to the one-time process of adding unversioned files and

Ignore Patterns for CVS Users

The Subversion svn: i gnor e property isvery similar in syntax and function to the CVS. cvsi gnor e file. Infact, if you are
migrating a CV'S working copy to Subversion, you can directly migrate the ignore patterns by using the . cvsi gnor e file as
input file to the svn propset command:

$ svn propset svn:ignore -F .cvsignore .
property 'svn:ignore' set on '.'
$

There are, however, some differencesin thewaysthat CV S and Subversion handleignore patterns. The two systems usetheignore
patterns at some different times, and there are slight discrepanciesin what the ignore patterns apply to. Also, Subversion does not
recognize the use of the! pattern as areset back to having no ignore patterns at all.

Theglobal list of ignore patterns tends to be more a matter of personal taste and ties more closely to a user's particular tool chain than
to the details of any particular working copy's needs. So, therest of thissection will focusonthesvn: i gnor e property and its uses.

Say you have the following output from svn status:

$ svn status calc

M calc/button.c
cal c/ cal cul at or
calc/data.c
cal ¢/ debug_| og
cal c/ debug_l 0g. 1
cal c/ debug_Il 0g. 2. gz
cal c/ debug_I 0g. 3. gz

B EESRESEESEES BEN]

In this example, you have made some property modifications to but t on. ¢, but in your working copy, you also have some
unversioned files: the latest cal cul at or program that you've compiled from your source code, a source file named dat a. c,
and a set of debugging output logfiles. Now, you know that your build system always results in the cal cul at or program being
generated.7 And you know that your test suite always|eavesthose debugging logfileslying around. Thesefactsaretruefor all working
copies of thisproject, not just your own. And you know that you aren't interested in seeing those things every timeyou run svn status,
and you are pretty sure that nobody else is interested in them either. So you use svn propedit svn:ignore cal c toadd
some ignore patternsto the cal ¢ directory.

$ svn propget svn:ignore calc

’Isn't that the whole point of abuild system?

63

Advanced Topics

cal cul at or
debug_| og*
$

After you've added this property, you will now have alocal property modification on the cal ¢ directory. But notice what elseis
different about your svn status output:

$ svn status

M cal c
M calc/button.c
? calc/data.c

Now, all that cruft is missing from the output! Your cal cul at or compiled program and al those logfiles are till in your working
copy; Subversion just isn't constantly reminding you that they are present and unversioned. And now with all the uninteresting noise
removed from the display, you are left with more intriguing items—such as that source code file dat a. ¢ that you probably forgot
to add to version control.

Of course, this less-verbose report of your working copy status isn't the only one available. If you actually want to see the ignored
files as part of the status report, you can passthe - - no- i gnor e option to Subversion:

$ svn status --no-ignore

M cal c

M cal c/button.c
| cal ¢/ cal cul at or
? cal c/data.c

cal ¢/ debug_| og

cal c/debug |l o0g. 1
cal ¢/ debug_l 0g. 2. gz
cal ¢/ debug_| og. 3. gz

Asmentioned earlier, thelist of file patternstoignoreisalso used by svn add and svn import. Both of these operationsinvolve asking
Subversion to begin managing some set of files and directories. Rather than force the user to pick and choose which filesin atree she
wishesto start versioning, Subversion uses the ignore patterns—both the global and the per-directory lists—to determine which files
should not be swept into the version control system as part of a larger recursive addition or import operation. And here again, you
can usethe- - no-i gnor e option to tell Subversion to disregard itsignores list and operate on all the files and directories present.

expanded into an explicit list of targets before Subversion operates on them, so running svn SUBCOMVAND * isjust
likerunningsvn SUBCOVMAND filel file2 file3 ...Inthecaseof thesvn add command, this has an effect
similar to passing the- - no- i gnor e option. So instead of using awildcard, usesvn add --force . todoabulk
scheduling of unversioned things for addition. The explicit target will ensure that the current directory isn't overlooked
because of being already under version control, and the - - f or ce option will cause Subversion to crawl through that
directory, adding unversioned files while still honoring the svn: i gnor e property and gl obal - i gnor es runtime
configuration variable. Be sure to also provide the - - dept h fi | es option to the svn add command if you don't
want afully recursive crawl for thingsto add.

o Evenif svn: i gnor e is set, you may run into problemsif you use shell wildcardsin acommand. Shell wildcards are

Keyword Substitution

Subversion has the ability to substitute keywords—pieces of useful, dynamic information about aversioned file—into the contents of
thefileitself. Keywords generally provide information about the last modification made to the file. Because thisinformation changes
each time the file changes, and more importantly, just after the file changes, it is a hassle for any process except the version control
system to keep the data completely up to date. Left to human authors, the information would inevitably grow stale.

64

Advanced Topics

For example, say you have a document in which you would like to display the last date on which it was modified. Y ou could burden
every author of that document to, just before committing their changes, al so tweak the part of the document that describeswhen it was
last changed. But sooner or later, someone would forget to do that. Instead, ssmply ask Subversion to perform keyword substitution
onthelLast ChangedDat e keyword. Y ou control where the keyword is inserted into your document by placing a keyword anchor
at the desired location in the file. Thisanchor isjust astring of text formatted as $Keywor dNane$.

All keywords are case-sensitive where they appear as anchorsin files: you must use the correct capitalization for the keyword to be
expanded. Y ou should consider the value of the svn: keywor ds property to be case-sensitive, too—certain keyword names will
be recognized regardless of case, but this behavior is deprecated.

Subversion defines the list of keywords available for substitution. That list contains the following keywords, some of which have
aliases that you can also use:

Dat e

This keyword describes the last time the file was known to have been changed in the repository, and is of the form $Dat e:
2006-07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $.Itmay alsobespecifiedasLast ChangedDat e. Unlike
the | d keyword, which uses UTC, the Dat e keyword displays dates using the local time zone.

Revi si on

This keyword describes the last known revision in which this file changed in the repository, and looks something like
$Revi si on: 144 $. It may also be specified asLast ChangedRevi si on or Rev.

Aut hor

This keyword describes the last known user to change this file in the repository, and looks something like $Aut hor: harry
$. It may also be specified asLast ChangedBy.

HeadURL

This keyword describes the full URL to the latest version of the file in the repository, and looks something like $Head URL:
http://svn. exanpl e. conf repos/trunk/cal c. c $. It may be abbreviated as URL.

Id

This keyword is a compressed combination of the other keywords. Its substitution looks something like $l d: cal c. ¢ 148
2006- 07-28 21:30:43Z sally $, andisinterpreted to mean that the file cal c. ¢ was last changed in revision 148
on the evening of July 28, 2006 by the user sal | y. The date displayed by this keyword isin UTC, unlike that of the Dat e
keyword (which uses the local time zone).

Header

This keyword is similar to the | d keyword but contains the full URL of the latest revision of the item, identical to
HeadURL. Its substitution looks something like $Header: http://svn. exanpl e. com repos/trunk/calc.c
148 2006-07-28 21:30:43Z sally $.

Severa of the preceding descriptions use the phrase “last known” or similar wording. Keep in mind that keyword expansion is a
client-side operation, and your client “knows” only about changes that have occurred in the repository when you update your working
copy to include those changes. If you never update your working copy, your keywords will never expand to different values even if
those versioned files are being changed regularly in the repository.

Simply adding keyword anchor text to your file does nothing special. Subversion will never attempt to perform textual substitutions
on your file contents unless explicitly asked to do so. After all, you might be writing a document® about how to use keywords, and
you don't want Subversion to substitute your beautiful examples of unsubstituted keyword anchors!

8. or maybe even a section of abook ...

65

Advanced Topics

To tell Subversion whether to substitute keywords on a particular file, we again turn to the property-related subcommands. The
svn: keywor ds property, when set on a versioned file, controls which keywords will be substituted on that file. The valueis a
space-delimited list of keyword names or aliases.

For example, say you have aversioned file named weat her . t xt that lookslike this:

Here is the latest report fromthe front lines.

$Last ChangedDat e$

Rev

Cumul us cl ouds are appearing nore frequently as sumer approaches.

With no svn: keywor ds property set on that file, Subversion will do nothing special. Now, let's enable substitution of the
Last ChangedDat e keyword.

$ svn propset svn:keywords "Date Author" weather.txt
property 'svn: keywords' set on 'weather.txt’
$

Now you have made alocal property modification on theweat her . t xt file. Y ou will see no changesto the file's contents (unless
you made some of your own prior to setting the property). Notice that the file contained a keyword anchor for the Rev keyword, yet
we did not include that keyword in the property value we set. Subversion will happily ignore requests to substitute keywords that are
not present in the file and will not substitute keywords that are not present inthe svn: keywor ds property value.

Immediately after you commit this property change, Subversion will update your working file with the new substitute text. Instead
of seeing your keyword anchor $Last ChangedDat e$, you'll see its substituted result. That result also contains the name of the
keyword and continues to be delimited by the dollar sign ($) characters. And as we predicted, the Rev keyword was not substituted
because we didn't ask for it to be.

Notealsothat wesetthesvn: keywor ds property toDat e Aut hor , yetthekeyword anchor used thealias$Last ChangedDat e
$ and still expanded correctly:

Here is the latest report fromthe front lines.

$Last ChangedDat e: 2006-07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $
Rev

Cumul us cl ouds are appearing nore frequently as summer approaches.

If someone else now commits a change to weat her . t xt , your copy of that file will continue to display the same substituted
keyword value as before—until you update your working copy. At that time, the keywords in your weat her . t xt file will be
resubstituted with information that reflects the most recent known commit to that file.

Where's $GlobalRev$?

New users are often confused by how the Rev keyword works. Since the repository has a single, globally increasing revision
number, many people assume that it is this number that is reflected by the Rev keyword's value. But Rev expands to show
the last revision in which the file changed, not the last revision to which it was updated. Understanding this clears the confusion,
but frustration often remains—without the support of a Subversion keyword to do so, how can you automatically get the global
revision number into your files?

To do this, you need external processing. Subversion shipswith atool called svnver sion, which was designed for just this purpose.
It crawls your working copy and generates as output the revision(s) it finds. You can use this program, plus some additional
tooling, to embed that revision information into your files. For more information on svnver sion, seethe section called “ svnversion
—Subversion Working Copy Version Info”.

66

Advanced Topics

You can also instruct Subversion to maintain afixed length (in terms of the number of bytes consumed) for the substituted keyword.
By using adouble colon (; :) after the keyword name, followed by a number of space characters, you define that fixed width. When
Subversion goes to substitute your keyword for the keyword and its value, it will essentially replace only those space characters,
leaving the overall width of the keyword field unchanged. If the substituted value is shorter than the defined field width, there will be
extra padding characters (spaces) at the end of the substituted field; if it istoo long, it is truncated with a special hash (#) character
just before the final dollar sign terminator.

For exampl e, say you have adocument in which you have some section of tabular datareflecting the document's Subversion keywords.
Using the original Subversion keyword substitution syntax, your file might look something like:

Rev: Revi si on of last commt
$Aut hor$: Author of last commt
$Dat e$: Date of |ast commit

Now, that looks nice and tabular at the start of things. But when you then commit that file (with keyword substitution enabled, of
COUrse), you see:

$Rev: 12 $: Revi si on of |ast conmit
$Aut hor: harry $: Author of last commit
$Dat e: 2006- 03-15 02: 33: 03 - 0500 (Wed, 15 Mar 2006) $: Date of last conmt

The result is not so beautiful. And you might be tempted to then adjust the file after the substitution so that it again looks tabular.
But that holds only as long as the keyword values are the same width. If the last committed revision rolls into a new place value
(say, from 99 to 100), or if another person with alonger username commits the file, stuff gets all crooked again. However, if you
are using Subversion 1.2 or later, you can use the new fixed-length keyword syntax and define some field widths that seem sane,
so your file might look like this:

$Rev: : $: Revision of last commt
$Aut hor: : $: Author of last commt
$Dat e: : $: Date of |last commit

Y ou commit this change to your file. Thistime, Subversion notices the new fixed-length keyword syntax and maintains the width of
the fields as defined by the padding you placed between the double colon and the trailing dollar sign. After substitution, the width
of the fields is completely unchanged—the short values for Rev and Aut hor are padded with spaces, and the long Dat e field is
truncated by a hash character:

$Rev:: 13 $: Revision of last commt
$Aut hor:: harry $: Author of last commt
$Dat e: : 2006-03-15 0#$%:. Date of last commt

The use of fixed-length keywords is especialy handy when performing substitutions into complex file formats that themselves use
fixed-length fields for data, or for which the stored size of a given data field is overbearingly difficult to modify from outside the
format's native application. Of course, where binary file formats are concerned, you must always take great care that any keyword
substitution you introduce—fixed-length or otherwise—does not violate the integrity of that format. While it might sound easy
enough, this can be an astonishingly difficult task for most of the popular binary file formats in use today, and not something to be
undertaken by the faint of heart!

exists. For example, a username that contains some multibyte UTF-8 characters might suffer truncation in the middle
of the string of bytes that make up one of those characters. The result will be a mere truncation when viewed at the
byte level, but will likely appear as a string with an incorrect or garbled fina character when viewed as UTF-8 text.
It is conceivable that certain applications, when asked to load the file, would notice the broken UTF-8 text and deem

Q Be awarethat because the width of akeyword field is measured in bytes, the potential for corruption of multibyte values

67

Advanced Topics

the entire file corrupt, refusing to operate on the file altogether. So, when limiting keywords to afixed size, choose a
size that allows for this type of byte-wise expansion.

Sparse Directories

By default, most Subversion operations on directories act in arecursive manner. For example, svn checkout creates aworking copy
with every file and directory in the specified area of the repository, descending recursively through the repository tree until the entire
structure is copied to your local disk. Subversion 1.5 introduces afeature called sparse directories (or shallow checkouts) that allows
you to easily check out a working copy—or a portion of a working copy—more shallowly than full recursion, with the freedom to
bring in previously ignored files and subdirectories at alater time.

For example, say we have arepository with atree of files and directories with names of the members of a human family with pets.
(It'san odd example, to be sure, but bear with us.) A regular svn checkout operation will give us aworking copy of the whole tree;

svn checkout file:///var/svn/repos nom
nonm son
noni son/ gr andson
nonml daught er
noni daught er/ gr anddaught er 1
noni daught er / gr anddaught er 1/ bunny1. t xt
noni daught er / gr anddaught er 1/ bunny2. t xt
noni daught er / gr anddaught er 2
nmoni daught er/fi shi e. t xt
mom ki ttyl.txt
nonl doggi el. t xt
Checked out revision 1.
$

>>>>r>>>>>>H

Now, let's check out the same tree again, but this time we'll ask Subversion to give us only the topmost directory with none of its
children at al:

$ svn checkout file:///var/svn/repos nomenpty --depth enpty
Checked out revision 1
$

Notice that we added to our original svn checkout command line a new - - dept h option. This option is present on many of
Subversion's subcommands and issimilar to the- - non-r ecur si ve (- N)and - - r ecur si ve (- R) options. In fact, it combines,
improves upon, supercedes, and ultimately obsol etes these two older options. For starters, it expands the supported degrees of depth
specification available to users, adding some previously unsupported (or inconsistently supported) depths. Here are the depth values
that you can regquest for a given Subversion operation:

--depth enpty

Include only the immediate target of the operation, not any of itsfile or directory children.
--depth files

Include the immediate target of the operation and any of itsimmediate file children.
--depth i medi at es

Include the immediate target of the operation and any of its immediate file or directory children. The directory children will
themselves be empty.

68

Advanced Topics

--depth infinity
Include the immediate target, its file and directory children, its children's children, and so on to full recursion.

Of course, merely combining two existing options into one hardly constitutes a new feature worthy of a whole section in our book.
Fortunately, thereis more to this story. Thisidea of depth extends not just to the operations you perform with your Subversion client,
but also as a description of aworking copy citizen's ambient depth, which is the depth persistently recorded by the working copy for
that item. Its key strength is this very persistence—the fact that it is sticky. The working copy remembers the depth you've selected
for eachitemin it until you later change that depth selection; by default, Subversion commands operate on the working copy citizens
present, regardless of their selected depth settings.

You can check the recorded ambient depth of a working copy using the svn info command. If the ambient depth is
oj anything other than infinite recursion, svn info will display aline describing that depth value:

$ svn info nomimediates | grep "“Depth:"
Dept h: i nmedi at es
$

Our previous examples demonstrated checkouts of infinite depth (the default for svn checkout) and empty depth. Let's look now
at examples of the other depth values:

$ svn checkout file:///var/svn/repos nomfiles --depth files

A nmomfiles/kittyl.txt

A nom fil es/doggi el. t xt

Checked out revision 1.

$ svn checkout file:///var/svn/repos nominmredi ates --depth i medi at es
A nom i nredi at es/ son

A nom i mredi at es/ daught er

A nmom i mredi ates/kittyl. txt
A nom i mredi at es/ doggi el. t xt
Checked out revision 1.

$

As described, each of these depths is something more than only the target, but something less than full recursion.

We've used svn checkout asan example here, but you'll find the - - dept h option present on many other Subversion commands, too.
In those other commands, depth specification is away to limit the scope of an operation to some depth, much like the way the older
--non-recursive (-N)and- - recursi ve (- R) options behave. This means that when operating on aworking copy of some
depth, while requesting an operation of a shallower depth, the operation is limited to that shallower depth. In fact, we can make an
even more general statement: given aworking copy of any arbitrary—even mixed—ambient depth, and a Subversion command with
some requested operational depth, the command will maintain the ambient depth of the working copy members while still limiting
the scope of the operation to the requested (or default) operational depth.

In addition to the - - dept h option, the svn update and svn switch subcommands also accept a second depth-related option: - -
set - dept h. It iswith this option that you can change the sticky depth of aworking copy item. Watch what happens as we take our
empty-depth checkout and gradually telescope it deeper using svn updat e --set-dept h NEW DEPTH TARGET:

$ svn update --set-depth files nmomenpty

A nmomenpty/ kittiel.txt

A nom enpt y/ doggi el. t xt

Updated to revision 1.

$ svn update --set-depth inmedi ates nmom enpty

69

Advanced Topics

A nmom enpt y/ son

A nmom enpt y/ daught er

Updated to revision 1.

$ svn update --set-depth infinity momenpty

nmom enpt y/ son/ gr andson

nmom enpt y/ daught er/ gr anddaught er 1

nmom enpt y/ daught er/ gr anddaught er 1/ bunny1. t xt
mom enpt y/ daught er/ gr anddaught er 1/ bunny2. t xt
nmom enpt y/ daught er/ gr anddaught er 2

mom enpt y/ daught er/ fi shi el. t xt

Updated to revision 1.

$

>>>>>>r

Aswe gradually increased our depth selection, the repository gave us more pieces of our tree.

In our example, we operated only on the root of our working copy, changing its ambient depth value. But we can independently
change the ambient depth value of any subdirectory inside the working copy, too. Careful use of this ability allows us to flesh out
only certain portions of the working copy tree, leaving other portions absent altogether (hence the “ sparse” bit of the feature's name).
Here's an example of how we might build out a portion of one branch of our family's tree, enable full recursion on another branch,
and keep still other pieces pruned (absent from disk).

$rm-rf nomenpty

$ svn checkout file:///var/svn/repos nomenpty --depth empty
Checked out revision 1.

$ svn update --set-depth enpty nmom enpty/son

A nmom enpt y/ son

Updated to revision 1.

$ svn update --set-depth enpty nmom enpty/daughter

A nmom enpt y/ daught er

Updated to revision 1.

$ svn update --set-depth infinity mom enpty/daughter/granddaughterl
A nmom enpt y/ daught er/ gr anddaught er 1

A nmom enpt y/ daught er/ gr anddaught er 1/ bunny1. t xt

A mom enpt y/ daught er/ gr anddaught er 1/ bunny2. t xt

Updated to revision 1.

$

Fortunately, having a complex collection of ambient depths in a single working copy doesn't complicate the way you interact with
that working copy. Y ou can still make, revert, display, and commit local modifications in your working copy without providing any
new options (including - - dept h and - - set - dept h) to the relevant subcommands. Even svn update works as it does el sewhere
when no specific depth is provided—it updates the working copy targets that are present while honoring their sticky depths.

Y ou might at this point be wondering, “ So what? When would | use this?’ One scenario where this feature finds utility istied to a
particular repository layout, specifically where you have many related or codependent projects or software modulesliving as siblings
inasinglerepository location (t r unk/ proj ect 1,t runk/ pr oj ect 2,t r unk/ pr oj ect 3, etc.). In such scenarios, it might be
the case that you personally care about only a handful of those projects—maybe some primary project and a few other modules on
which it depends. Y ou can check out individual working copies of all of these things, but those working copies are digoint and, asa
result, it can be cumbersome to perform operations across several or al of them at the sametime. The alternative isto use the sparse
directories feature, building out a single working copy that contains only the modules you care about. Y ou'd start with an empty-
depth checkout of the common parent directory of the projects, and then update with infinite depth only the items you wish to have,
like we demonstrated in the previous example. Think of it like an opt-in system for working copy citizens.

The original (Subversion 1.5) implementation of shallow checkouts was good, but didn't support de-telescoping of working copy
items. Subversion 1.6 remedies this problem. For example, running svn update --set-depth enpty inaninfinite-depth

70

Advanced Topics

working copy will discard everything but the topmost di rectory.9 Subversion 1.6 also introduces another supported value for the - -
set - dept h option: excl ude. Using - - set - dept h excl ude with svn update will cause the update target to be removed
from the working copy entirely—a directory target won't even be left present-but-empty. This is especially handy when there are
more things that you'd like to keep in aworking copy than things you'd like to not keep.

Consider a directory with hundreds of subdirectories, one of which you would like to omit from your working copy. Using an
“additive” approach to sparse directories, you might check out the directory with an empty depth, then explicitly telescope (using
svn update --set-depth infinity)eachandevery subdirectory of the directory except the one you don't care about it.

$ svn checkout http://svn.exanple.conm repos/ many-dirs --depth empty
élsvn update --set-depth infinity many-dirs/wanted-dir-1

élsvn update --set-depth infinity many-dirs/wanted-dir-2

élsvn update --set-depth infinity many-dirs/wanted-dir-3

and so on, and so on,

This could be quite tedious, especially since you don't even have stubs of these directories in your working copy to deal with.
Such aworking copy would also have another characteristic that you might not expect or desire: if someone else creates any new
subdirectoriesin this top-level directory, you won't receive those when you update your working copy.

With Subversion 1.6, you could take a different approach. First, you'd check out the directory in full. Then you would run svn
updat e --set-depth excl ude onthe one subdirectory you don't care about.

$ svn checkout http://svn.exanple.con repos/ many-dirs

$ svn update --set-depth exclude many-dirs/unwant ed-dir
D many-di r s/ unwant ed-di r
$

This approach leaves your working copy with the same stuff as in the first approach, but any new subdirectories which appear in
the top-level directory would also show up when you update your working copy. The downside of this approach is that you have
to actually check out that whole subdirectory that you don't even want just so you can tell Subversion that you don't want it. This
might not even be possible if that subdirectory is too large to fit on your disk (which might, after all, be the very reason you don't
want it in your working copy).

you might have noticed that the output fromsvn updat e --set-depth excl ude differsfrom that of anormal
update operation. This output betrays the fact that, under the hood, exlusion is a completely client-side operation, very
much unlike atypical update.

: While the functionality for excluding an existing item from aworking copy was hung off of the svn update command,

In such a situation, you might consider a compromise approach. First, check out the top-level directory with - - depth
i medi at es. Then, exclude the directory you don't want using svn updat e --set-depth excl ude. Findly, telescopeall
the items that remain to infinite depth, which should be fairly easy to do because they are all addressable in your shell.

$ svn checkout http://svn.exanple.conm repos/ many-dirs --depth i medi ates

$ svn update --set-depth exclude many-dirs/unwant ed-dir
D many-di r s/ unwant ed-di r

9Sarfely, of course. Asin other situations, Subversion will leave on disk any files you've modified or which aren't versioned.

71

Advanced Topics

$ svn update --set-depth infinity many-dirs/*

Once again, your working copy will have the same stuff asin the previous two scenarios. But now, any time anew file or subdirectory
is committed to the top-level directory, you'll receive it—at an empty depth—when you update your working copy. Y ou can now
decide what to do with such newly appearing working copy items: expand them into infinite depth, or exclude them altogether.

Locking

Subversion's copy-modify-merge version control model livesand dies on its data merging al gorithms—specifically on how well those
algorithms perform when trying to resolve conflicts caused by multiple users modifying the same file concurrently. Subversion itself
provides only one such agorithm: athree-way differencing algorithm that is smart enough to handle data at a granularity of asingle
line of text. Subversion also allows you to supplement its content merge processing with external differencing utilities (as described
in the section called “External diff3” and the section called “External merge”’), some of which may do an even better job, perhaps
providing granularity of aword or a single character of text. But common among those algorithms is that they generally work only
on text files. The landscape starts to look pretty grim when you start talking about content merges of nontextual file formats. And
when you can't find atool that can handle that type of merging, you begin to run into problems with the copy-modify-merge model.

Let'slook at areal-life example of where this model runs aground. Harry and Sally are both graphic designers working on the same
project, a bit of marketing collateral for an automobile mechanic. Central to the design of a particular poster is an image of a car
in need of some bodywork, stored in afile using the PNG image format. The poster's layout is almost finished, and both Harry and
Sally are pleased with the particular photo they chose for their damaged car—a baby blue 1967 Ford Mustang with an unfortunate
bit of crumpling on the |eft front fender.

Now, asis common in graphic design work, there's a change in plans, which causes the car's color to be a concern. So Sally updates
her working copy to HEAD, fires up her photo-editing software, and sets about tweaking the image so that the car is now cherry red.
Meanwhile, Harry, feeling particularly inspired that day, decides that the image would have greater impact if the car also appears
to have suffered greater impact. He, too, updates to HEAD, and then draws some cracks on the vehicle's windshield. He manages
to finish his work before Sally finishes hers, and after admiring the fruits of his undeniable talent, he commits the modified image.
Shortly thereafter, Sally is finished with the car's new finish and tries to commit her changes. But, as expected, Subversion fails the
commit, informing Sally that her version of theimage is now out of date.

Here's where the difficulty setsin. If Harry and Sally were making changes to a text file, Sally would simply update her working
copy, receiving Harry's changes in the process. In the worst possible case, they would have modified the same region of the file,
and Sally would have to work out by hand the proper resolution to the conflict. But these aren't text files—they are binary images.
And while it's a simple matter to describe what one would expect the results of this content merge to be, there is precious little
chance that any software exists that is smart enough to examine the common baseline image that each of these graphic artists worked
against, the changes that Harry made, and the changes that Sally made, and then spit out an image of a busted-up red Mustang with
a cracked windshield!

Of course, things would have gone more smoothly if Harry and Sally had serialized their modifications to the image—if, say, Harry
had waited to draw his windshield cracks on Sally's now-red car, or if Sally had tweaked the color of a car whose windshield was
already cracked. Asis discussed in the section called “The copy-modify-merge solution”, most of these types of problems go away
entirely where perfect communication between Harry and Sally exists.'? But as one's version control systemiis, in fact, one form of
communication, it follows that having that software facilitate the seridization of nonparallelizable editing efforts is no bad thing.
This is where Subversion's implementation of the lock-modify-unlock model steps into the spotlight. This is where we talk about
Subversion's locking feature, which is similar to the “reserved checkouts’ mechanisms of other version control systems.

Subversion's locking feature exists ultimately to minimize wasted time and effort. By allowing a user to programmatically claim the
exclusive right to change afile in the repository, that user can be reasonably confident that any energy he invests on unmergeable
changes won't be wasted—his commit of those changes will succeed. Also, because Subversion communicates to other users that
serialization is in effect for a particular versioned object, those users can reasonably expect that the object is about to be changed

10Communication wouldn't have been such bad medicine for Harry and Sally's Hollywood namesakes, either, for that matter.

72

Advanced Topics

by someone else. They, too, can then avoid wasting their time and energy on unmergeable changes that won't be committable due
to eventual out-of-dateness.

When referring to Subversion's locking feature, one is actually talking about a fairly diverse collection of behaviors, which include
the ability to lock aversioned filett (claiming the exclusive right to modify thefile), to unlock that file (yielding that exclusive right
to modify), to see reports about which files are locked and by whom, to annotate files for which locking before editing is strongly
advised, and so on. In this section, we'll cover all of these facets of the larger locking feature.

The Three Meanings of “Lock”

In this section, and almost everywhere in this book, the words “lock” and “locking” describe a mechanism for mutual exclusion
between usersto avoid clashing commits. Unfortunately, there are two other sorts of “lock” with which Subversion, and therefore
this book, sometimes needs to be concerned.

The second isworking copy locks, used internally by Subversion to prevent clashes between multiple Subversion clients operating
on the same working copy. Thisisthe sort of lock indicated by an L in the third column of svn status output, and removed by the
svn cleanup command, as described in the section called “ Sometimes Y ou Just Need to Clean Up”.

Third, there are database locks, used internally by the Berkeley DB backend to prevent clashes between multiple programstrying
to access the database. This is the sort of lock whose unwanted persistence after an error can cause arepository to be “wedged,”
as described in the section called “Berkeley DB Recovery”.

Y ou can generally forget about these other kinds of locks until something goes wrong that requires you to care about them. In this
book, “lock” means the first sort unless the contrary is either clear from context or explicitly stated.

Creating Locks

In the Subversion repository, alock is a piece of metadata that grants exclusive accessto one user to change afile. Thisuser issaid to
bethelock owner. Each lock also hasauniqueidentifier, typically along string of characters, known asthe lock token. The repository
manages |locks, ultimately handling their creation, enforcement, and removal. If any commit transaction attempts to modify or delete
alocked file (or delete one of the parent directories of thefile), the repository will demand two pieces of information—that the client
performing the commit be authenticated as the lock owner, and that the lock token has been provided as part of the commit process
as aform of proof that the client knows which lock it isusing.

To demonstrate lock creation, let's refer back to our example of multiple graphic designers working on the same binary image files.
Harry has decided to change a JPEG image. To prevent other people from committing changesto the file while he ismodifying it (as
well as alerting them that he is about to change it), he locks the file in the repository using the svn lock command.

$ svn lock banana.jpg -m"Editing file for tonorrow s rel ease."
' banana.jpg' |ocked by user 'harry'.
$

The preceding example demonstrates a number of new things. First, notice that Harry passed the - - message (- n) option to svn
lock. Similar to svn commit, the svn lock command can take comments—viaeither - - nessage (-mor--fi | e (- F)—todescribe
the reason for locking the file. Unlike svn commit, however, svn lock will not demand a message by launching your preferred text
editor. Lock comments are optional, but still recommended to aid communication.

Second, the lock attempt succeeded. This meansthat the file wasn't already locked, and that Harry had the latest version of thefile. If
Harry'sworking copy of thefile had been out of date, the repository would have rejected the request, forcing Harry to svn update and
reattempt the locking command. The locking command would aso have failed if the file had already been locked by someone else.

Asyou can see, the svn lock command prints confirmation of the successful lock. At this point, thefact that the fileislocked becomes
apparent in the output of the svn status and svn info reporting subcommands.

Hsubversion does not currently allow locks on directories.

73

Advanced Topics

$ svn status
K banana.j pg

$ svn info banana.jpg

Pat h: banana. j pg

Name: banana.j pg

URL: http://svn.exanpl e.conirepos/ project/banana.jpg

Repository Root: http://svn. exanpl e.con repos/ proj ect

Repository UUI D: edb2f 264- 5ef 2- 0310- a47a- 87b0cel7a8ec

Revi si on: 2198

Node Kind: file

Schedul e: nor nal

Last Changed Aut hor: frank

Last Changed Rev: 1950

Last Changed Date: 2006-03-15 12:43:04 -0600 (Wed, 15 Mar 2006)
Text Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Properties Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Checksum 3b110d3b10638f 5d1f 4f eOf 436a5a2a5

Lock Token: opaquel ockt oken: 0cOf 600b- 88f 9- 0310- 9e48- 355b44d4a58e
Lock Omner: harry

Lock Created: 2006-06-14 17:20:31 -0500 (Wed, 14 Jun 2006)

Lock Comment (1 line):

Editing file for tonorrow s rel ease.

$

The fact that the svn info command, which does not contact the repository when run against working copy paths, can display the
lock token reveals an important piece of information about those tokens: they are cached in the working copy. The presence of the
lock token iscritical. It gives the working copy authorization to make use of the lock later on. Also, the svn status command shows
aK next to the file (short for locKed), indicating that the lock token is present.

Regarding Lock Tokens

A lock token isn't an authentication token, so much as an authorization token. The token isn't a protected secret. In fact, alock's
unique token is discoverable by anyonewho runssvn i nf o URL. A lock token is special only when it lives inside a working
copy. It's proof that the lock was created in that particular working copy, and not somewhere else by some other client. Merely
authenticating as the lock owner isn't enough to prevent accidents.

For example, suppose you lock afile using a computer at your office, but leave work for the day before you finish your changes
to that file. It should not be possible to accidentally commit changes to that same file from your home computer later that evening
simply because you've authenticated as the lock's owner. In other words, the lock token prevents one piece of Subversion-related
software from undermining the work of another. (In our example, if you really need to change thefile from an alternative working
copy, you would need to break the lock and relock thefile.)

Now that Harry haslocked banana. j pg, Sally is unable to change or delete that file:

$ svn del ete banana.j pg

D banana. j pg
$ svn conmit -m"Delete useless file."
Del eti ng banana. j pg

svn: Conmit failed (details follow):
svn: Server sent unexpected return value (423 Locked) in response to DELETE\

74

Advanced Topics

request for '/repos/project/!svn/wk/64bad3a9-96f9- 0310- 818a- df 4224ddc35d/\
banana. j pg'

But Harry, after touching up the banana's shade of yellow, is able to commit his changes to the file. That's because he authenticates
as the lock owner and also because his working copy holds the correct lock token:

$ svn status

M K banana.j pg

$ svn commit -m "Make banana nore yel | ow'
Sendi ng banana. j pg

Transnmitting file data .

Conmitted revision 2201.

$ svn status

$

Notice that after the commit is finished, svn status shows that the lock token is no longer present in the working copy. Thisis the
standard behavior of svn commit—it searches the working copy (or list of targets, if you provide such alist) for local modifications
and sends all thelock tokensit encounters during thiswalk to the server aspart of the commit transaction. After the commit completes
successfully, al of the repository locks that were mentioned are released—even on files that weren't committed. This is meant to
discourage usersfrom being sloppy about locking or from holding locksfor too long. If Harry haphazardly locks 30 filesin adirectory
named i mages because he's unsure of which files he needs to change, yet changes only four of those files, when he runs svn
conmi t i mages, the processwill till release all 30 locks.

This behavior of automatically releasing locks can be overridden with the - - no- unl ock option to svn commit. Thisis best used
for those times when you want to commit changes, but still plan to make more changes and thus need to retain existing locks. You
can also make this your default behavior by setting the no- unl ock runtime configuration option (see the section called “ Runtime
Configuration Ared’).

Of course, locking afile doesn't oblige one to commit a changeto it. The lock can be released at any time with asimple svn unlock
command:

$ svn unl ock banana.c
" banana. ¢' unl ocked.

Discovering Locks

When a commit fails due to someone else's locks, it's fairly easy to learn about them. The easiest way istorunsvn st at us - u:

$ svn status -u

M 23 bar.c

M 0] 32 raisin.jpg
* 72 foo. h

St at us agai nst revi sion: 105

$

In this example, Sally can see not only that her copy of f 0o. h isout of date, but also that one of the two modified files she plans
to commit is locked in the repository. The O symbol stands for “Other,” meaning that a lock exists on the file and was created by
somebody else. If she were to attempt a commit, thelock onr ai si n. j pg would prevent it. Sally is left wondering who made the
lock, when, and why. Once again, svn info has the answers:

75

Advanced Topics

$ svn info A raisin.jpg

Pat h: raisin.jpg

Name: raisin.jpg

URL: http://svn.exanpl e.conirepos/project/raisin.jpg
Repository Root: http://svn. exanpl e.con repos/ project
Repository UUI D: edb2f 264- 5ef 2- 0310- a47a- 87b0cel7a8ec

Revi si on: 105

Node Kind: file

Last Changed Author: sally

Last Changed Rev: 32

Last Changed Date: 2006-01-25 12:43:04 -0600 (Sun, 25 Jan 2006)
Lock Token: opaquel ockt oken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b
Lock Omner: harry

Lock Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)

Lock Comment (1 line):

Need to nake a quick tweak to this image.

$

Just as you can use svn info to examine objects in the working copy, you can also use it to examine objects in the repository. If the
main argument to svn info isaworking copy path, then al of the working copy's cached information is displayed; any mention of a
lock means that the working copy is holding alock token (if afileislocked by another user or in another working copy, svn info on
aworking copy path will show no lock information at al). If the main argument to svn info is a URL, the information reflects the
latest version of an object in the repository, and any mention of alock describes the current lock on the object.

So in this particular example, Sally can see that Harry locked the file on February 16 to “make a quick tweak.” It being June, she
suspects that he probably forgot all about the lock. She might phone Harry to complain and ask him to release the lock. If he's
unavailable, she might try to forcibly break the lock herself or ask an administrator to do so.

Breaking and Stealing Locks

A repository lock isn't sacred—in Subversion's default configuration state, locks can be released not only by the person who created
them, but by anyone. When somebody other than the original lock creator destroys alock, we refer to this as breaking the lock.

From the administrator's chair, it'ssimpleto break locks. The svnlook and svnadmin programs have the ability to display and remove
locks directly from the repository. (For more information about these tools, see the section called “ An Administrator's Toolkit”.)

$ svnadm n | sl ocks /var/svn/repos

Pat h: /project?2/imges/banana.jpg

UUI D Token: opaquel ockt oken: c32b4d88- e8f b- 2310- abb3- 153ff 1236923
Omner: frank

Created: 2006-06-15 13:29:18 -0500 (Thu, 15 Jun 2006)

Expi res:
Comment (1 line):
Still inproving the yellow col or.

Path: /project/raisin.jpg

UUI D Token: opaquel ockt oken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b
Owner: harry

Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)

Expi res:

Comment (1 line):

Need to nake a quick tweak to this image.

76

Advanced Topics

$ svnadm n rnm ocks /var/svn/repos /project/raisin.jpg
Removed | ock on '/project/raisin.jpg .
$

The more interesting option is to allow users to break each other's locks over the network. To do this, Sally simply needs to pass
the- - f or ce to the svn unlock command:

$ svn status -u

M 23 bar. c

M 0] 32 rai sin.jpg
* 72 foo. h

St at us agai nst revi sion: 105

$ svn unl ock raisin.jpg

svn: 'raisin.jpg" is not locked in this working copy

$ svn info raisin.jpg | grep URL

URL: http://svn.exanpl e.conlrepos/project/raisin.jpg

$ svn unlock http://svn. exanpl e. conl repos/ project/raisin.jpg

svn: Unlock request failed: 403 Forbidden (http://svn.exanple.con)

$ svn unlock --force http://svn. exanpl e. conl repos/ project/raisin.jpg
"raisin.jpg" unlocked.

Now, Sally'sinitial attempt to unlock failed because she ran svn unlock directly on her working copy of the file, and no lock token
was present. To remove the lock directly from the repository, she needs to pass a URL to svn unlock. Her first attempt to unlock the
URL fails, because she can't authenticate as the lock owner (nor does she have the lock token). But when she passes - - f or ce, the
authentication and authorization requirements are ignored, and the remote lock is broken.

Simply breaking a lock may not be enough. In the running example, Sally may not only want to break Harry's long-forgotten lock,
but relock thefile for her own use. She can accomplish thisby using svn unlock with - - f or ce and then svn lock back-to-back, but
theresasmall chance that somebody el se might lock the file between the two commands. The simpler thing to do isto steal the lock,
which involves breaking and relocking the file all in one atomic step. To do this, Sally passesthe - - f or ce option to svn lock:

$ svn lock raisin.jpg

svn: Lock request failed: 423 Locked (http://svn.exanple.com
$ svn lock --force raisin.jpg

‘raisin.jpg’ |ocked by user 'sally'.

In any case, whether the lock is broken or stolen, Harry may be in for a surprise. Harry's working copy still contains the original
lock token, but that lock no longer exists. The lock token is said to be defunct. The lock represented by the lock token has either
been broken (no longer in the repository) or stolen (replaced with a different lock). Either way, Harry can see this by asking svn
status to contact the repository:

$ svn status
K raisin.jpg
$ svn status -u
B 32 raisin.jpg
St at us agai nst revi sion: 105
$ svn update
B raisin.jpg
Updated to revision 105.
$ svn status

77

Advanced Topics

$

If the repository lock was broken, then svn st at us - - show updat es (- u) displays a B (Broken) symbol next to thefile. If
anew lock existsin place of the old one, then aT (sTolen) symbol is shown. Finaly, svn update notices any defunct lock tokens
and removes them from the working copy.

Locking Policies

Different systems have different notions of how strict alock should be. Some folks argue that locks must be strictly enforced at
all costs, releasable only by the original creator or administrator. They argue that if anyone can break alock, chaos runs rampant
and the whole point of locking is defeated. The other side argues that locks are first and foremost a communication tool. If users
are constantly breaking each other's locks, it represents a cultural failure within the team and the problem falls outside the scope
of software enforcement.

Subversion defaultsto the “ softer” approach, but still allows administratorsto create stricter enforcement policies through the use
of hook scripts. In particular, the pr e- | ock and pr e- unl ock hooks alow administrators to decide when lock creation and
lock releases are allowed to happen. Depending on whether a lock already exists, these two hooks can decide whether to allow
acertain user to break or steal alock. The post - | ock and post - unl ock hooks are also available, and can be used to send
email after locking actions. To learn more about repository hooks, see the section called “Implementing Repository Hooks’.

Lock Communication

We've seen how svn lock and svn unlock can be used to create, release, break, and steal locks. This satisfies the goal of serializing
commit accessto afile. But what about the larger problem of preventing wasted time?

For example, suppose Harry locks an image file and then begins editing it. Meanwhile, miles away, Sally wantsto do the same thing.
She doesn't think torunsvn st at us - u, so she hasno ideathat Harry has already locked the file. She spends hours editing the
file, and when she tries to commit her change, she discovers that either the file is locked or that she's out of date. Regardless, her
changes aren't mergeable with Harry's. One of these two people has to throw away his or her work, and alot of time has been wasted.

Subversion's solution to this problem is to provide a mechanism to remind users that a file ought to be locked before the editing
begins. The mechanismisaspecia property: svn: needs- | ock. If that property is attached to afile (regardless of itsvalue, which
isirrelevant), Subversion will try to use filesystem-level permissions to make the file read-only—unless, of course, the user has
explicitly locked the file. When alock token is present (as a result of using svn lock), the file becomes read/write. When the lock
isreleased, the file becomes read-only again.

The theory, then, isthat if the image file has this property attached, Sally would immediately notice something is strange when she
opensthefilefor editing: many applications alert usersimmediately when aread-only fileis opened for editing, and nearly all would
prevent her from saving changesto thefile. Thisreminds her to lock thefile before editing, whereby she discoversthe preexisting lock:

$ /usr/local/bin/ginp raisin.jpg

ginp: error: file is read-only!

$1s -l raisin.jpg

-r--r--r-- 1 sally sally 215589 Jun 8 19:23 raisin.jpg

$ svn lock raisin.jpg

svn: Lock request failed: 423 Locked (http://svn.exanple.con)

$ svn info http://svn.exanpl e.confrepos/project/raisin.jpg | grep Lock
Lock Token: opaquel ockt oken: f c2b4dee-98f 9- 0310- abf 3- 653f f 3226e6b
Lock Omer: harry

Lock Created: 2006-06-08 07:29:18 -0500 (Thu, 08 June 2006)

Lock Comment (1 line):

Maki ng some tweaks. Locking for the next two hours.

78

Advanced Topics

$

Users and administrators alike are encouraged to attach the svn: needs- | ock property to any file that cannot be
@/J contextually merged. This is the primary technique for encouraging good locking habits and preventing wasted effort.

Note that this property is a communication tool that works independently from the locking system. In other words, any file can be
locked, whether or not this property is present. And conversely, the presence of this property doesn't make the repository require
alock when committing.

Unfortunately, the system isn't flawless. It's possible that even when a file has the property, the read-only reminder won't always
work. Sometimes applications misbehave and “hijack” the read-only file, silently alowing users to edit and save the file anyway.
There's not much that Subversion can do in this situation—at the end of the day, there's simply no substitution for good interpersonal
communication.*?

Externals Definitions

Sometimesit is useful to construct aworking copy that is made out of a number of different checkouts. For example, you may want
different subdirectories to come from different locations in a repository or perhaps from different repositories altogether. Y ou could
certainly set up such a scenario by hand—using svn checkout to create the sort of nested working copy structure you are trying
to achieve. But if this layout is important for everyone who uses your repository, every other user will need to perform the same
checkout operations that you did.

Fortunately, Subversion provides support for externals definitions. An externals definition is a mapping of alocal directory to the
URL—and ideally a particular revision—of a versioned directory. In Subversion, you declare externals definitions in groups using
thesvn: ext er nal s property. You can create or modify this property using svn propset or svn propedit (see the section called
“Manipulating Properties”). It can be set on any versioned directory, and its value describes both the external repository location and
the client-side directory to which that location should be checked out.

The convenienceof thesvn: ext er nal s property isthat onceit isset on aversioned directory, everyone who checks out aworking
copy with that directory aso gets the benefit of the externals definition. In other words, once one person has made the effort to
define the nested working copy structure, no one else has to bother—Subversion will, after checking out the origina working copy,
automatically aso check out the external working copies.

The relative target subdirectories of externals definitions must not already exist on your or other users systems—
° Subversion will create them when it checks out the external working copy.

You aso get in the externals definition design all the regular benefits of Subversion properties. The definitions are versioned. If
you need to change an externals definition, you can do so using the regular property modification subcommands. When you commit
a change to the svn: ext er nal s property, Subversion will synchronize the checked-out items against the changed externals
definition when you next run svn updat e. The same thing will happen when others update their working copies and receive your
changes to the external s definition.

Because the svn: ext er nal s property has a multiline value, we strongly recommend that you use svn propedit
Q/J instead of svn propset.

Subversion releases prior to 1.5 honor an externals definition format that isamultiline table of subdirectories (relativeto the versioned
directory on which the property is set), optional revision flags, and fully qualified, absolute Subversion repository URLs. An example
of thismight look as follows:

12Except, perhaps, a classic Vulcan mind-meld.

79

Advanced Topics

$ svn propget svn:externals calc

t hi rd- party/ sounds http://svn. exanpl e. coni r epos/ sounds
third-party/skins -r148 http://svn. exanpl e. conf ski npr oj
third-party/skins/toolkit -r21 http://svn.exanpl e. com ski n- maker

When someone checks out aworking copy of the cal ¢ directory referred to in the previous example, Subversion also continuesto
check out the items found in its externals definition.

$ svn checkout http://svn.exanpl e.comrepos/calc
A cal c

A cal c/ Makefile

A calc/integer.c

A cal c/button.c

Checked out revision 148.

Fetching external iteminto calc/third-party/sounds
A cal ¢/t hird-party/sounds/di ng. ogg

A cal ¢/t hird-party/sounds/ dong. ogg

A cal ¢/ third-party/sounds/ cl ang. ogg

A cal ¢/t hird-party/ sounds/ bang. ogg
A cal ¢/ third-party/sounds/twang. ogg
Checked out revision 14.

Fetching external iteminto calc/third-party/skins

Asof Subversion 1.5, though, anew format of thesvn: ext er nal s property is supported. Externals definitions are still multiline,
but the order and format of the various pieces of information have changed. The new syntax more closely mimics the order of
arguments you might passto svn checkout: the optional revision flags comefirst, then the external Subversion repository URL, and
finally the relative local subdirectory. Notice, though, that this time we didn't say “fully qualified, absolute Subversion repository
URLs.” That's because the new format supports relative URLs and URLSs that carry peg revisions. The previous example of an
externals definition might, in Subversion 1.5, look like the following:

$ svn propget svn:externals calc

http://svn. exanpl e. coni repos/ sounds third-party/sounds
-r148 http://svn. exanpl e. com ski nproj third-party/skins
-r21 http://svn. exanpl e. com ski n-maker third-party/skins/tool kit

Or, making use of the peg revision syntax (which we describe in detail in the section called “Peg and Operative Revisions'), it might
appear as.

$ svn propget svn:externals calc

http://svn. exanpl e. conf repos/ sounds third-party/sounds
http://svn. exanpl e. conl ski nproj @48 third-party/skins
http://svn. exanpl e. con ski n- maker @1 third-party/skins/tool kit

You should seriously consider using explicit revision numbers in al of your externals definitions. Doing so means
D that you get to decide when to pull down a different snapshot of external information, and exactly which snapshot to

80

Advanced Topics

pull. Besides avoiding the surprise of getting changes to third-party repositories that you might not have any control
over, using explicit revision numbers also means that as you backdate your working copy to a previous revision, your
externals definitions will also revert to the way they looked in that previous revision, which in turn means that the
external working copies will be updated to match the way they looked back when your repository was at that previous
revision. For software projects, this could be the difference between a successful and afailed build of an older snapshot
of your complex codebase.

For most repositories, these three ways of formatting the externals definitions have the same ultimate effect. They all bring the same
benefits. Unfortunately, they all bring the same annoyances, too. Since the definitions shown use absolute URLS, moving or copying
adirectory to which they are attached will not affect what gets checked out as an external (though therelative local target subdirectory
will, of course, move with the renamed directory). This can be confusing—even frustrating—in certain situations. For example, say
you have atop-level directory named nmy- pr oj ect , and you've created an externals definition on one of its subdirectories (ny -
pr oj ect/ some- di r) that tracks the latest revision of another of its subdirectories (my- pr oj ect/ ext ernal - di r).

$ svn checkout http://svn.exanpl e.com projects .
A nmy- pr oj ect

A nmy- proj ect/sone-dir

A nmy-proj ect/external -dir

Fetching external iteminto 'ny-project/sone-dir/subdir'
Checked out external at revision 11.

Checked out revision 11.
$ svn propget svn:externals my-project/sone-dir
subdir http://svn.exanpl e.coni projects/ my-project/external-dir

$

Now you use svn moveto renametheny- pr oj ect directory. At this point, your externals definition will still refer to a path under
themmy- pr oj ect directory, even though that directory no longer exists.

$ svn nove -qg ny-project renaned-project

$ svn comit -m "Renane ny-project to renamed-project."”
Del eti ng nmy- pr oj ect

Addi ng r enamed- pr oj ect

Committed revision 12.
$ svn update

Fetching external iteminto 'renanmed-project/sone-dir/subdir'
svn: Target path does not exi st
$

Also, absolute URLSs can cause problems with repositories that are available via multiple URL schemes. For example, if your
Subversion server isconfigured to allow everyoneto check out therepository overht t p: // orhtt ps: //, but only allow commits
tocomeinviahtt ps://,you have an interesting problem on your hands. If your externals definitions usethe ht t p: // form of
the repository URLSs, you won't be able to commit anything from the working copies created by those externals. On the other hand,
if they usethe htt ps:// form of the URLSs, anyone who might be checking out viaht t p: / / because his client doesn't support
htt ps: // will be unable to fetch the external items. Be aware, too, that if you need to reparent your working copy (using svn
switch with the - - r el ocat e option), externals definitions will not also be reparented.

Subversion 1.5 takes a huge step in relieving these frustrations. As mentioned earlier, the URLs used in the new externals definition
format can be relative, and Subversion provides syntax magic for specifying multiple flavors of URL relativity.

81

Advanced Topics

Relative to the URL of the directory on which thesvn: ext er nal s property is set
N
Relative to the root of the repository in which the svn: ext er nal s property is versioned

/1

Relative to the scheme of the URL of the directory on which thesvn: ext er nal s property is set

Relative to the root URL of the server on which thesvn: ext er nal s property isversioned

So, looking afourth time at our previous externals definition example, and making use of the new absolute URL syntax in various
ways, we might now see:

$ svn propget svn:externals calc

Al sounds third-party/sounds

/ ski nproj @48 third-party/skins

/1 svn. exanpl e. cont ski n- maker @1 t hird-party/skins/tool kit
$

Subversion 1.6 brings two more improvementsto externals definitions. First, it adds a quoting and escape mechanism to the syntax so
that the path of the external working copy may contain whitespace. Thiswas previously problematic, of course, because whitespaceis
used to delimit thefieldsin an external s definition. Now you need only wrap such a path specification in double-quote (") characters
or escape the problematic characters in the path with a backslash (\) character. Of course, if you have spacesin the URL portion of
the external definition, you should use the standard URI-encoding mechanism to represent those.

$ svn propget svn:externals paint

http://svn.thirdparty. com repos/ My%20Proj ect "My Project”
http://svn.thirdparty. com repos/ ¥%22Quot es%?0Too%22 \ " Quot es\ Too\"
$

Subversion 1.6 also introduces support for external definitionsfor files. File externalsare configured just like externalsfor directories
and appear as aversioned file in the working copy.

For example, let'ssay you had thefile/ t r unk/ bi keshed/ bl ue. ht m inyour repository, and you wanted thisfile, asit appeared
in revision 40, to appear in your working copy of / t r unk/ ww/ asgreen. ht i .

The external s definition required to achieve this should look familiar by now:

$ svn propget svn:externals www/

Al trunk/ bi keshed/ bl ue. ht M @0 green. htm
$ svn update

Fetching external iteminto ' ww

E ww gr een. ht m

Updat ed external to revision 40.

Update to revision 103.
$ svn status
X ww/ green. htm

82

Advanced Topics

$

As you can see in the previous output, Subversion denotes file externals with the letter E when they are fetched into the working
copy, and with the letter X when showing the working copy status.

While directory externals can place the external directory at any depth, and any missing intermediate directories will
Q be created, file externals must be placed into aworking copy that is already checked out.

When examining the file external with svn info, you can see the URL and revision the external is coming from:;

$ svn info ww green. htmn

Pat h: www/ green. ht m

Name: green. htm

URL: http://svn.exanpl e.coni projects/ my-project/trunk/bi keshed/ bl ue. ht n
Repository Root: http://svn. exanpl e.cont projects/ny-project
Repository UUI D. b2a368dc- 7564- 11de- bb2b- 113435390e17

Revi sion: 40

Node kind: file

Schedul e: nor nal

Last Changed Author: harry

Last Changed Rev: 40

Last Changed Date: 2009-07-20 20:38:20 +0100 (Mon, 20 Jul 2009)
Text Last Updated: 2009-07-20 23:22:36 +0100 (Mon, 20 Jul 2009)
Checksum 01a58b04617b92492d99662¢3837b33b

$

Becausefile externals appear in the working copy as versioned files, they can be modified and even committed if they reference afile
at the HEAD revision. The committed changes will then appear in the external aswell asthefilereferenced by the external. However,
in our example, we pinned the external to an older revision, so attempting to commit the external fails:

$ svn status

M X ww/ green. htnl

$ svn commit -m "change the color" ww/ green. htn
Sendi ng ww/ gr een. ht m

svn: Conmit failed (details follow):

svn: File '/trunk/bikeshed/ blue.htm"' is out of date
$

Keep this in mind when defining file externals. If you need the external to refer to a certain revision of afile you will not be able
to modify the external. If you want to be able to modify the external, you cannot specify a revision other than the HEAD revision,
whichisimplied if no revision is specified.

Unfortunately, the support which existsfor externa sdefinitionsin Subversionremainslessthanideal . Both fileand directory externals
have shortcomings. For either type of external, the local subdirectory part of the definition cannot contain . . parent directory
indicators (such as . . / . . / ski ns/ nyski n). File externals cannot refer to files from other repositories. A file external's URL
must always be in the same repository asthe URL that the file external will be inserted into. Also, file externals cannot be moved or
deleted. Thesvn: ext er nal s property must be modified instead. However, file externals can be copied.

Perhaps most disappointingly, the working copies created viathe externals definition support are still disconnected from the primary
working copy (on whose versioned directoriesthesvn: ext er nal s property was actually set). And Subversion still truly operates
only on nondisjoint working copies. So, for example, if you want to commit changesthat you've madein one or more of those external
working copies, you must run svn commit explicitly on those working copies—committing on the primary working copy will not
recurse into any external ones.

83

Advanced Topics

We've already mentioned some of the additional shortcomings of the old svn: ext er nal s format and how the newer Subversion
1.5 format improves upon it. But be careful when making use of the new format that you don't inadvertently introduce new problems.
For example, while the latest clients will continue to recognize and support the original externals definition format, pre-1.5 clients
will not be able to correctly parse the new format. If you change all your externals definitions to the newer format, you effectively
force everyone who uses those external s to upgrade their Subversion clientsto aversion that can parse them. Also, be careful to avoid
naively relocating the - r NNN portion of the definition—the older format uses that revision as a peg revision, but the newer format
uses it as an operative revision (with a peg revision of HEAD unless otherwise specified; see the section called “Peg and Operative
Revisions’ for afull explanation of the distinction here).

would any other working copy. This can be a handy feature, allowing you to examine an external working copy
independently of any primary working copy whose svn: ext er nal s property caused its instantiation. Be careful,
though, that you don'tinadvertently modify your external working copy in subtlewaysthat cause problems. For example,
while an external s definition might specify that the external working copy should be held at aparticular revision number,
if you run svn update directly on the external working copy, Subversion will oblige, and now your external working
copy isout of sync with its declaration in the primary working copy. Using svn switch to directly switch the external
working copy (or some portion thereof) to another URL could cause similar problems if the contents of the primary
working copy are expecting particular contents in the external content.

Q External working copies are still completely self-sufficient working copies. Y ou can operate directly on them as you

Besides the svn checkout, svn update, svn switch, and svn export commands which actually manage the digjoint (or disconnected)
subdirectoriesinto which external s are checked out, the svn status command al so recogni zes external s definitions. It displays astatus
code of X for the digoint external subdirectories, and then recurses into those subdirectories to display the status of the external
items themselves. You can passthe - - i gnor e- ext er nal s option to any of these subcommands to disable externals definition
processing.

Changelists

It is commonplace for a devel oper to find himself working at any given time on multiple different, distinct changesto a particular bit
of source code. Thisisn't necessarily due to poor planning or some form of digital masochism. A software engineer often spots bugs
in his peripheral vision while working on some nearby chunk of source code. Or perhaps he's halfway through some large change
when he realizes the solution he's working on is best committed as several smaller logical units. Often, these logical units aren't
nicely contained in some module, safely separated from other changes. The units might overlap, modifying different filesin the same
module, or even modifying different linesin the samefile.

Developers can employ various work methodol ogies to keep these logical changes organized. Some use separate working copies of
the same repository to hold each individual change in progress. Others might choose to create short-lived feature branches in the
repository and use a single working copy that is constantly switched to point to one such branch or another. Still others use diff
and patch tools to back up and restore uncommitted changes to and from patch files associated with each change. Each of these
methods has its pros and cons, and to alarge degree, the details of the changes being made heavily influence the methodology used
to distinguish them.

Subversion provides achangelistsfeature that adds yet another method to the mix. Changelists are basically arbitrary labels (currently
at most one per file) applied to working copy files for the express purpose of associating multiple files together. Users of many of
Googl€'s software offerings are familiar with this concept aready. For example, Gmail [http://mail.google.com/] doesn't provide the
traditional folders-based email organization mechanism. In Gmail, you apply arbitrary labels to emails, and multiple emails can be
said to be part of the same group if they happen to share a particular label. Viewing only a group of similarly labeled emails then
becomes a simple user interface trick. Many other Web 2.0 sites have similar mechanisms—consider the “tags’ used by sites such
as Y ouTube [http://www.youtube.com/] and Flickr [http://www.flickr.com/], “categories’ applied to blog posts, and so on. Folks
understand today that organization of datais critical, but that how that datais organized needsto be aflexible concept. The old files-
and-folders paradigm istoo rigid for some applications.

Subversion's changelist support allows you to create changelists by applying labels to files you want to be associated with that
changelist, remove those labels, and limit the scope of the files on which its subcommands operate to only those bearing a particular
label. In this section, we'll ook in detail at how to do these things.

84

http://mail.google.com/
http://mail.google.com/
http://www.youtube.com/
http://www.youtube.com/
http://www.flickr.com/
http://www.flickr.com/

Advanced Topics

Creating and Modifying Changelists

You can create, modify, and delete changelists using the svn changelist command. More accurately, you use this command to set
or unset the changelist association of a particular working copy file. A changelist is effectively created the first time you label a
file with that changelist; it is deleted when you remove that 1abel from the last file that had it. Let's examine a usage scenario that
demonstrates these concepts.

Harry isfixing some bugs in the calculator application's mathematics logic. His work leads him to change a couple of files:

$ svn status

M i nteger.c
M mat hops. c
$

While testing his bug fix, Harry notices that his changes bring to light a tangentially related bug in the user interface logic found
in but t on. c. Harry decides that helll go ahead and fix that bug, too, as a separate commit from his math fixes. Now, in a small
working copy with only ahandful of filesand few logical changes, Harry can probably keep histwological change groupings mentally
organized without any problem. But today he's going to use Subversion's changelists feature as a special favor to the authors of this
book.

Harry first creates a changelist and associates with it the two files he's already changed. He does this by using the svn changelist
command to assign the same arbitrary changelist name to those files:

$ svn changelist math-fixes integer.c mathops.c

Path 'integer.c' is now a nmenber of changelist 'math-fixes'.
Path 'mathops.c' is now a nmenber of changelist 'math-fixes'.
$ svn status

--- Changelist 'math-fixes':

M i nteger.c
M mat hops. ¢
$

Asyou can see, the output of svn status reflects this new grouping.

Harry now sets off to fix the secondary Ul problem. Since he knows which file he'll be changing, he assigns that path to a changelist,
too. Unfortunately, Harry carelessly assigns thisthird file to the same changelist as the previous two files:

$ svn changelist math-fixes button.c
Path 'button.c' is now a nenber of changelist 'nath-fixes'.
$ svn status

--- Changelist 'math-fixes':

button.c
M i nteger.c
M mat hops. ¢

$

Fortunately, Harry catches his mistake. At this point, he hastwo options. He can remove the changelist association from but t on. ¢,
and then assign a different changelist name:

85

Advanced Topics

$ svn changelist --renpve button.c

Path 'button.c' is no | onger a nenber of a changelist.
$ svn changelist ui-fix button.c

Path 'button.c' is now a nenber of changelist "ui-fix".
$

Or, he can skip the removal and just assign a new changelist name. In this case, Subversion will first warn Harry that but t on. ¢
is being removed from the first changelist:

$ svn changelist ui-fix button.c

svn: warning: Renoving 'button.c' from changelist 'nath-fixes'.
Path 'button.c' is now a nenber of changelist "ui-fix".

$ svn status

--- Changelist "ui-fix":
button.c

--- Changelist 'math-fixes':

M i nteger.c
M mat hops. ¢
$

Harry now hastwo distinct changelists present in hisworking copy, and svn statuswill group its output according to these changelist
determinations. Notice that even though Harry hasn't yet modified but t on. c, it still shows up in the output of svn status as
interesting because it has a changelist assignment. Changelists can be added to and removed from files at any time, regardless of
whether they contain local modifications.

Harry now fixes the user interface problemin but t on. c.

$ svn status

--- Changelist "ui-fix':
M button.c

--- Changelist 'math-fixes':

M i nteger.c
M mat hops. ¢
$

Changelists As Operation Filters

The visual grouping that Harry sees in the output of svn status as shown in our previous section is nice, but not entirely useful. The
status command is but one of many operationsthat he might wish to perform on hisworking copy. Fortunately, many of Subversion's
other operations understand how to operate on changelists viathe use of the - - changel i st option.

When provided with a- - changel i st option, Subversion commands will limit the scope of their operation to only those files to
which a particular changelist name is assigned. If Harry now wants to see the actua changes he's made to the filesin his mat h-
fi xes changelist, he could explicitly list only the files that make up that changelist on the svn diff command line.

$ svn diff integer.c nmathops.c
I ndex: integer.c

86

Advanced Topics

--- integer.c (revision 1157)
+++ integer.c (working copy)

I ndex: mat hops. c

--- mathops.c (revision 1157)
+++ mat hops. ¢ (wor ki ng copy)

That works okay for afew files, but what if Harry's change touched 20 or 30 files? That would be an annoyingly long list of explicitly
named files. Now that he's using changelists, though, Harry can avoid explicitly listing the set of filesin his changelist from now
on, and instead provide just the changelist name:

$ svn diff --changelist math-fixes
I ndex: integer.c

--- integer.c (revision 1157)
+++ integer.c (working copy)

I ndex: mat hops. ¢

--- mathops.c (revision 1157)
+++ mat hops. ¢ (wor ki ng copy)

And when it'stime to commit, Harry can again usethe - - changel i st option to limit the scope of the commit to filesin a certain
changelist. He might commit his user interface fix by doing the following:

$ svn conmmit -m"Fix a U bug found while working on math logic." \
--changelist ui-fix

Sendi ng button.c

Transmitting file data .

Conmitted revision 1158.

$

In fact, the svn commit command provides a second changdlists-related option: - - keep- changel i st s. Normally, changelist
assignments are removed from files after they are committed. But if - - keep- changel i st s is provided, Subversion will leave
the changelist assignment on the committed (and now unmodified) files. In any case, committing files assigned to one changelist
leaves other changelists undisturbed.

$ svn status

--- Changelist 'math-fixes':
i nteger.c
mat hops. ¢

The - - changel i st option acts only as a filter for Subversion command targets, and will not add targets to an
operation. For example, on acommit operation specifiedassvn comit / pat h/t o/ di r,thetargetisthedirectory

\0 "=

87

Advanced Topics

/ pat h/ t o/ di r anditschildren (to infinite depth). If you then add a changelist specifier to that command, only those
filesinand under / pat h/ t o/ di r that are assigned that changelist name will be considered as targets of the commit
—the commit will not include files located elsewhere (such as in/ pat h/ t o/ anot her - di r), regardless of their
changelist assignment, even if they are part of the same working copy as the operation's target(s).

Even the svn changelist command accepts the - - changel i st option. This allows you to quickly and easily rename or remove
achangelist:

$ svn changel i st math-bugs --changelist math-fixes --depth infinity .
svn: warning: Renoving 'integer.c' fromchangelist 'math-fixes'.

Path 'integer.c' is now a nenber of changelist 'math-bugs'.

svn: warni ng: Renoving 'mathops.c' from changelist 'math-fixes'.

Path 'mat hops.c' is now a nenber of changelist 'math-bugs'.

$ svn changelist --renpve --changelist math-bugs --depth infinity .
Path 'integer.c' is no longer a nenber of a changelist.

Path 'mat hops.c' is no longer a nenber of a changeli st.

$

Finally, you can specify multiple instances of the - - changel i st option on a single command line. Doing so limits the operation
you are performing to files found in any of the specified changesets.

Changelist Limitations

Subversion's changelist feature is a handy tool for grouping working copy files, but it does have a few limitations. Changelists are
artifacts of a particular working copy, which means that changelist assignments cannot be propagated to the repository or otherwise
shared with other users. Changelists can be assigned only to files—Subversion doesn't currently support the use of changelists with
directories. Finally, you can have at most one changelist assignment on agiven working copy file. Hereiswherethe blog post category
and photo service tag anal ogies break down—if you find yourself needing to assign afile to multiple changelists, you're out of luck.

Network Model

At some point, you're going to need to understand how your Subversion client communicateswith its server. Subversion's networking
layer isabstracted, meaning that Subversion clients exhibit the same general behaviorsno matter what sort of server they are operating
against. Whether speaking the HTTP protocol (ht t p: / /) withthe Apache HTTP Server or speaking the custom Subversion protocol
(svn:/ /) with svnserve, the basic network model is the same. In this section, we'll explain the basics of that network model,
including how Subversion manages authentication and authorization matters.

Requests and Responses

The Subversion client spends most of its time managing working copies. When it needs information from a remote repository,
however, it makes a network request, and the server responds with an appropriate answer. The details of the network protocol are
hidden from the user—the client attemptsto accessa URL, and depending on the URL scheme, aparticular protocol isused to contact
the server (see the section called “ Addressing the Repository™).

0 Runsvn --versi on toseewhich URL schemes and protocols the client knows how to use.

When the server process receives a client request, it often demands that the client identify itself. It issues an authentication challenge
to the client, and the client responds by providing credentials back to the server. Once authentication is compl ete, the server responds
with the original information that the client asked for. Notice that this system is different from systems such as CVS, where the client
preemptively offers credentials (“logsin®) to the server before ever making arequest. In Subversion, the server “pulls’ credentials by

88

Advanced Topics

challenging the client at the appropriate moment, rather than the client “pushing” them. This makes certain operations more el egant.
For example, if aserver is configured to allow anyone in the world to read a repository, the server will never issue an authentication
challenge when a client attempts to svn checkout.

If the particular network requests issued by the client result in a new revision being created in the repository (e.g., svh commit),
Subversion uses the authenticated username associated with those requests as the author of the revision. That is, the authenticated
user'snameis stored asthevalue of thesvn: aut hor property on the new revision (seethe section called “ Subversion Properties’).
If the client was not authenticated (i.e., if the server never issued an authentication challenge), therevision'ssvn: aut hor property
is empty.

Client Credentials

Many Subversion servers are configured to require authentication. Sometimes anonymous read operations are allowed, while write
operations must be authenticated. In other cases, reads and writes aike require authentication. Subversion's different server options
understand different authentication protocols, but from the user's point of view, authentication typically boils down to usernames and
passwords. Subversion clients offer several different ways to retrieve and store a user's authentication credentials, from interactive
prompting for usernames and passwords to encrypted and non-encrypted on-disk data caches.

The security-conscious reader will suspect immediately that there is reason for concern here. “Caching passwords on disk? That's
terrible! Y ou should never do that!” Don't worry—it's not as bad as it sounds. The following sections discuss the various types of
credential cachesthat Subversion uses, when it uses them, and how to disable that functionality in whole or in part.

Caching credentials

Subversion offers a remedy for the annoyance caused when users are forced to type their usernames and passwords over and over
again. By default, whenever the command-line client successfully responds to a server's authentication challenge, credentials are
cached on disk and keyed on a combination of the server's hostname, port, and authentication realm. This cache will then be
automatically consulted in the future, avoiding the need for the user to re-type his or her authentication credentials. If seemingly
suitable credentials are not present in the cache, or if the cached credentials ultimately fail to authenticate, the client will, by default,
fall back to prompting the user for the necessary information.

The Subversion devel opersrecognizethat on-disk caches of authentication credentials can beasecurity risk. To offset this, Subversion
works with available mechanisms provided by the operating system and environment to try to minimize the risk of leaking this
information.

* On Windows, the Subversion client stores passwords in the Y%APPDATA% Subver si on/ aut h/ directory. On Windows 2000
and later, the standard Windows cryptography services are used to encrypt the password on disk. Because the encryption key is
managed by Windows and is tied to the user's own login credentials, only the user can decrypt the cached password. (Note that
if the user's Windows account password is reset by an administrator, all of the cached passwords become undecipherable. The
Subversion client will behave as though they don't exist, prompting for passwords when required.)

» Similarly, on Mac OS X, the Subversion client stores al repository passwords in the login keyring (managed by the Keychain
service), which is protected by the user's account password. User preference settings can impose additional policies, such as
requiring that the user's account password be entered each time the Subversion password is used.

* For other Unix-like operating systems, no single standard “keychain” service exists. However, the Subversion client knows how to
store passwords securely using the* GNOME Keyring” and “KDE Wallet” services. Also, before storing unencrypted passwordsin
the~/ . subver si on/ aut h/ caching area, the Subversion client will ask the user for permission to do so. Note that theaut h/
caching areais still permission-protected so that only the user (owner) can read data from it, not the world at large. The operating
system's own file permissions protect the passwords from other non-administrative users on the same system, provided they have
no direct physical accessto the storage media of the home directory, or backups thereof.

Of course, for the truly paranoid, none of these mechanisms meets the test of perfection. So for those folks willing to sacrifice
convenience for the ultimate in security, Subversion provides various ways of disabling its credentials caching system altogether.

89

Advanced Topics

Disabling password caching

When you perform a Subversion operation that requires you to authenticate, by default Subversion tries to cache your authentication
credentials on disk in encrypted form. On some systems, Subversion may be unable to encrypt your authentication data. In those
situations, Subversion will ask whether you want to cache your credentialsto disk in plaintext:

$ svn checkout https://host.exanple.com 443/ svn/ private-repo

ATTENTI ONl' Your password for authentication realm
<https://host.exanpl e.com 443> Subversion Repository

can only be stored to di sk unencrypted! You are advised to configure
your system so that Subversion can store passwords encrypted, if
possi ble. See the docunentation for details.

You can avoid future appearances of this warning by setting the val ue
of the 'store-plaintext-passwords' option to either 'yes' or 'no' in
"/tnp/servers'.

Store password unencrypted (yes/no)?

If you want the convenience of not having to continually reenter your password for future operations, you can answer yes to this
prompt. If you're concerned about caching your Subversion passwords in plaintext and do not want to be asked about it again and
again, you can disable caching of plaintext passwords either permanently, or on a server-per-server basis.

that are in place for your client computer—many companies have strict rules about the ways that their employees

When considering how to use Subversion's password caching system, you'll want to consult any governing policies
° authentication credential's should be stored.

To permanently disable caching of passwordsin plaintext, add thelinest or e- pl ai nt ext - passwor ds = notothe[gl obal]
section in the ser ver s configuration file on the local machine. To disable plaintext password caching for a particular server, use
the same setting in the appropriate group section intheser ver s configuration file. (See the section called “ Configuration Options’
in Chapter 7, Customizing Your Subversion Experience for details.)

To disable password caching entirely for any single Subversion command-line operation, pass the - - no- aut h- cache option to
that command line. To permanently disable caching entirely, add the line st or e- passwords = no to your loca machine's
Subversion configuration file.

Removing cached credentials

Sometimes users will want to remove specific credentials from the disk cache. To do this, you need to navigate into theaut h/ area
and manually delete the appropriate cache file. Credentials are cached in individua files; if you look inside each file, you will see
keysand values. Thesvn: r eal nst ri ng key describes the particular server realm that thefile is associated with:

$ |'s ~/.subversion/auth/svn.sinple/
5671adf 2865e267db74f 09ba6f 872c28
3893ed123b39500bca8a0b382839198e
5¢3¢22968347b390f 349f f 340196ed39

$ cat ~/.subversion/auth/svn.sinple/5671adf 2865e267db74f 09ba6f 872c28

90

Advanced Topics

K 8

user name

V3

j oe

K 8

passwor d

V4

bl ah

K 15

svn:real nmstring
V 45
<https://svn.domai n. com 443> Joe's repository
END

Once you have |ocated the proper cachefile, just deleteit.

Command-line authentication

All Subversion command-line operations accept the - - user nanme and - - passwor d options, which allow you to specify your
username and password, respectively, so that Subversion isn't forced to prompt you for that information. Thisis especially handy if
you need to invoke Subversion from a script and cannot rely on Subversion being able to locate valid cached credentials for you.
These options are also helpful when Subversion has already cached authentication credentials for you, but you know they aren't the
ones you want it to use. Perhaps several system users share alogin to the system, but each have distinct Subversion identities. Y ou
can omit the - - passwor d option from this pair if you wish Subversion to use only the provided username, but still prompt you
for that username's password.

Authentication wrap-up

Onelast word about svn's authentication behavior, specifically regarding the - - user nane and - - passwor d options. Many client
subcommands accept these options, but it isimportant to understand that using these options does not automatically send credentials
to the server. As discussed earlier, the server “pulls’ credentials from the client when it deems necessary; the client cannot “ push”
them at will. If a username and/or password are passed as options, they will be presented to the server only if the server requests
them. These options are typically used to authenticate as a different user than Subversion would have chosen by default (such asyour
system login name) or when trying to avoid interactive prompting (such as when calling svn from a script).

- - user name and - - passwor d options to the client, they're surprised to see that they're never used; that is, new

A common mistake is to misconfigure a server so that it never issues an authentication challenge. When users pass
:: /: revisions still appear to have been committed anonymously!

Hereisafina summary that describes how a Subversion client behaves when it receives an authentication challenge.

1. First, theclient checkswhether the user specified any credentialsas command-lineoptions (- - user nane and/or - - passwor d).
If s0, the client will try to use those credentials to authenticate against the server.

2. If no command-line credentials were provided, or the provided ones were invalid, the client looks up the server's hostname, port,
and realm in the runtime configuration's aut h/ area, to see whether appropriate credentials are cached there. If so, it attempts
to use those credentials to authenticate.

3. Finally, if the previous mechanismsfailed to successfully authenticate the user against the server, the client resortsto interactively
prompting the user for valid credentials (unlessinstructed not todo so viathe- - non- i nt er act i ve option or itsclient-specific
equivalents).

If the client successfully authenticates by any of these methods, it will attempt to cache the credentials on disk (unless the user has
disabled this behavior, as mentioned earlier).

91

Advanced Topics

Summary

After reading this chapter, you should have a firm grasp on some of Subversion's features that, while perhaps not used every time
you interact with your version control system, are certainly handy to know about. But don't stop here! Read on to the following
chapter, where you'll learn about branches, tags, and merging. Then you'll have nearly full mastery of the Subversion client. Though
our lawyerswon't allow us to promise you anything, this additional knowledge could make you measurably more cool 3

BNo purchase necessary. Certains terms and conditions apply. No guarantee of coolness—implicit or otherwise—exists. Mileage may vary.

92

Chapter 4. Branching and Merging

“#HHHt (It is upon the Trunk that a gentleman works.)”
—Confucius

Branching, tagging, and merging are concepts common to almost all version control systems. If you're not familiar with theseideas, we
provide agood introduction in this chapter. If you are familiar, hopefully you'll find it interesting to see how Subversion implements
them.

Branching is a fundamental part of version control. If you're going to allow Subversion to manage your data, this is a feature
you'll eventually come to depend on. This chapter assumes that you're already familiar with Subversion's basic concepts (Chapter 1,
Fundamental Concepts).

What's a Branch?

Supposeit's your job to maintain a document for adivisionin your company—a handbook of some sort. One day a different division
asks you for the same handbook, but with afew parts “tweaked” for them, since they do things dlightly differently.

What do you do in this situation? Y ou do the obvious. make a second copy of your document and begin maintaining the two copies
separately. As each department asks you to make small changes, you incorporate them into one copy or the other.

Y ou often want to make the same change to both copies. For example, if you discover atypo in thefirst copy, it's very likely that the
same typo exists in the second copy. The two documents are almost the same, after al; they differ only in small, specific ways.

This is the basic concept of a branch—namely, a line of development that exists independently of another line, yet still shares a
common history if you look far enough back in time. A branch always beginslife as a copy of something, and moves on from there,
generating its own history (see Figure 4.1, “Branches of development”).

Figure 4.1. Branches of development
3rd branch

15t branch

¥

Original line of development

¥

2nd branch
time é

Subversion has commands to help you maintain parallel branches of your files and directories. It allows you to create branches by
copying your data, and remembers that the copies are related to one another. It aso helps you duplicate changes from one branch
to another. Finaly, it can make portions of your working copy reflect different branches so that you can “mix and match” different
lines of development in your daily work.

Using Branches

At this point, you should understand how each commit creates anew state of the filesystem tree (called a“revision”) in therepository.
If you don't, go back and read about revisionsin the section called “Revisions’.

For thischapter, we'll go back to the same examplefrom Chapter 1, Fundamental Concepts. Remember that you and your collaborator,
Sally, are sharing arepository that contains two projects, pai nt and cal c¢. Notice that in Figure 4.2, “ Starting repository layout”,

93

Branching and Merging

however, each project directory now contains subdirectories named t r unk and br anches. The reason for this will soon become
clear.

Figure4.2. Starting repository layout

(]

* cal —
—*
P S
[L=
= trunk -
[b=
g S
*=| branches
= paint i —
—
o W
[[
*=| trunk >

P NI B

*| branches

As before, assume that Sally and you both have working copies of the “calc” project. Specifically, you each have aworking copy of
/ cal ¢/t runk. All thefilesfor the project are in this subdirectory rather thanin/ cal c itself, because your team has decided that
/ cal ¢/t runk iswherethe “main line” of development is going to take place.

Let's say that you've been given the task of implementing a large software feature. It will take along time to write, and will affect
al thefilesin the project. The immediate problem is that you don't want to interfere with Sally, who isin the process of fixing small
bugs here and there. She's depending on the fact that the latest version of the project (in/ cal ¢/ t r unk) is aways usable. If you
start committing your changes bit by bit, you'll surely break things for Sally (and other team members as well).

Onestrategy isto crawl into ahole: you and Sally can stop sharing information for aweek or two. That is, start gutting and reorganizing
all the filesin your working copy, but don't commit or update until you're completely finished with the task. There are a number of
problemswith this, though. First, it's not very safe. Most peoplelike to save their work to the repository frequently, should something
bad accidentally happen to their working copy. Second, it's not very flexible. If you do your work on different computers (perhaps
you have aworking copy of / cal ¢/t r unk on two different machines), you'll need to manually copy your changes back and forth
or just do all the work on a single computer. By that same token, it's difficult to share your changes in progress with anyone else. A
common software devel opment “ best practice” isto allow your peersto review your work asyou go. If nobody seesyour intermediate
commits, you lose potential feedback and may end up going down the wrong path for weeks before another person on your team
notices. Finaly, when you're finished with all your changes, you might find it very difficult to remerge your final work with the
rest of the company's main body of code. Sally (or others) may have made many other changes in the repository that are difficult to
incorporate into your working copy—especialy if you run svn update after weeks of isolation.

The better solution is to create your own branch, or line of development, in the repository. This allows you to save your half-broken
work frequently without interfering with others, yet you can still selectively share information with your collaborators. You'll see
exactly how this works as we go.

94

Branching and Merging

Creating a Branch

Creating abranch is very simple—you make a copy of the project in the repository using the svn copy command. Subversionis able
to copy not only single files, but whole directories as well. In this case, you want to make a copy of the/ cal ¢/ t r unk directory.
Where should the new copy live? Wherever you wish—it's amatter of project policy. Let's say that your team has apolicy of creating
branchesinthe/ cal ¢/ br anches area of the repository, and you want to name your branch my- cal c- br anch. You'll want to
create anew directory, / cal ¢/ br anches/ nmy- cal c- br anch, which beginsitslifeasacopy of / cal ¢/t r unk.

Y ou may already have seen svn copy used to copy onefile to another within aworking copy. But it can also be used to do a“remote”
copy entirely within the repository. Just copy one URL to another:

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \
http://svn. exanpl e. conl repos/ cal ¢/ branches/ ny- cal c- branch \
-m"Creating a private branch of /calc/trunk."

Commi tted revision 341.

This command causes a near-instantaneous commit in the repository, creating a new directory in revision 341. The new directory
isacopy of / cal ¢/t runk. Thisisshown in Figure 4.3, “Repository with new copy” Iwhileitsalso possible to create a branch
by using svn copy to duplicate a directory within the working copy, this technique isn't recommended. It can be quite slow, in fact!
Copying adirectory on the client side is alinear-time operation, in that it actually hasto duplicate every file and subdirectory within
that working copy directory on the local disk. Copying a directory on the server, however, is a constant-time operation, and it's the
way most people create branches.

subversion does not support copying between different repositories. When using URLs with svn copy or svn move, you can only copy items within the same
repository.

95

Branching and Merging

Figure 4.3. Repository with new copy

= ke —
—
T
L=
= trunk -
L=
e —_—
*| branches Py
...I H
my-cale | ;. e
branch
S
—h‘ paint i — b
—
F .
e
= trunk -
e
P N S
* hranches

Cheap Copies

Subversion's repository has a special design. When you copy a directory, you don't need to worry about the repository growing
huge—Subversion doesn't actually duplicate any data. Instead, it creates a new directory entry that points to an existing tree. If
you're an experienced Unix user, you'll recognize this as the same concept behind ahard link. Asfurther changes are madeto files
and directories beneath the copied directory, Subversion continuesto employ this hard link concept whereit can. It duplicates data
only when it is necessary to disambiguate different versions of objects.

This is why you'll often hear Subversion users talk about “cheap copies.” It doesn't matter how large the directory is—it takes
avery tiny, constant amount of time and space to make a copy of it. In fact, this feature is the basis of how commits work in
Subversion: each revision isa*“ cheap copy” of the previousrevision, with afew itemslazily changed within. (To read more about
this, visit Subversion's web site and read about the “ bubble up” method in Subversion's design documents.)

Of course, these internal mechanics of copying and sharing data are hidden from the user, who simply sees copies of trees. The
main point hereisthat copies are cheap, both in time and in space. If you create a branch entirely within the repository (by running
svn copy URL1 URL2),it'saquick, constant-time operation. Make branches as often as you want.

Working with Your Branch

Now that you've created a branch of the project, you can check out a new working copy to start using it:

96

Branching and Merging

$ svn checkout http://svn.exanpl e.conl repos/cal ¢/ branches/ ny-cal c-branch
A ny-cal c-branch/ Makefile

A ny-cal c-branch/integer.c

A ny-cal c-branch/button.c

Checked out revision 341.

$

There's nothing special about thisworking copy; it simply mirrors adifferent directory in the repository. When you commit changes,
however, Sally won't see them when she updates, because her working copy isof / cal ¢/ t r unk. (Be sureto read the section called
“Traversing Branches’ later in this chapter: the svn switch command is an alternative way of creating aworking copy of a branch.)

Let's pretend that aweek goes by, and the following commits happen:

* Youmakeachangeto/ cal c/ branches/ my- cal c- branch/ but t on. c, which creates revision 342.
* Youmakeachangeto/ cal ¢/ branches/ ny- cal c- branch/ i nt eger . ¢, which creates revision 343.
» Sdly makesachangeto/ cal c/ trunk/ i nt eger. c, which creates revision 344.

Now two independent lines of development (shown in Figure 4.4, “The branching of one file's history”) are happening on
i nt eger.c.

Figure 4.4. The branching of onefile's history

Iﬂﬂﬁwl Fﬁﬂﬂﬁfl
5 5 » my-calc-branch
integer.s rid3
| cregled | (changed Lchanged
: = trunk
ra8 303 r341 r344

time @
Things get interesting when you look at the history of changes made to your copy of i nt eger . c:

$ pwd
/ honme/ user/ my-cal c- branch

$ svn log -v integer.c

r343 | user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M / cal c/ branches/ my-cal c- branch/i nteger.c

* integer.c: frozzled the wazjub.

r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
A /cal c/ branches/ my-cal c-branch (from/cal c/trunk: 340)

97

Branching and Merging

Creating a private branch of /cal c/trunk.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Cct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

ro8 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
A /cal c/trunk/integer.c

* integer.c: adding this file to the project.

Notice that Subversion is tracing the history of your branch'si nt eger . ¢ all the way back through time, even traversing the point
where it was copied. It shows the creation of the branch as an event in the history, becausei nt eger . ¢ wasimplicitly copied when
all of / cal ¢/t runk/ was copied. Now look at what happens when Sally runs the same command on her copy of thefile:

$ pwd
/ hone/sal ly/ cal ¢

$ svn log -v integer.c

r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: fix a bunch of spelling errors.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

rog8 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
A /calc/trunk/integer.c

* integer.c: adding this file to the project.

Sally sees her own revision 344 change, but not the change you made in revision 343. Asfar as Subversion is concerned, these two
commits affected different filesin different repository locations. However, Subversion does show that the two files share a common
history. Before the branch copy was made in revision 341, the files used to be the same file. That's why you and Sally both see the
changes made in revisions 303 and 98.

98

Branching and Merging

The Key Concepts Behind Branching

Y ou should remember two important |essons from this section. First, Subversion has no internal concept of a branch—it knows only
how to make copies. When you copy a directory, the resultant directory is only a “branch” because you attach that meaning to it.
You may think of the directory differently, or treat it differently, but to Subversion it's just an ordinary directory that happens to
carry some extra historical information.

Second, because of this copy mechanism, Subversion's branches exist as normal filesystem directories in the repository. This is
different from other version control systems, where branches aretypically defined by adding extra-dimensional “labels’ to collections
of files. The location of your branch directory doesn't matter to Subversion. Most teams follow a convention of putting all branches
into a/ br anches directory, but you're free to invent any policy you wish.

Basic Merging

Now you and Sally are working on parallel branches of the project: you're working on a private branch, and Sally is working on the
trunk, or main line of development.

For projects that have a large number of contributors, it's common for most people to have working copies of the trunk. Whenever
someone needs to make a long-running change that is likely to disrupt the trunk, a standard procedure is to create a private branch
and commit changes there until all the work is complete.

So, the good news is that you and Sally aren't interfering with each other. The bad news is that it's very easy to drift too far apart.
Remember that one of the problems with the “crawl in ahole” strategy is that by the time you're finished with your branch, it may
be near-impossible to merge your changes back into the trunk without a huge number of conflicts.

Instead, you and Sally might continue to share changes as you work. It's up to you to decide which changes are worth sharing;
Subversion gives you the ahility to selectively “copy” changes between branches. And when you're completely finished with your
branch, your entire set of branch changes can be copied back into the trunk. In Subversion terminology, the general act of replicating
changes from one branch to another is called merging, and it is performed using various invocations of the svn mer ge command.

In the examples that follow, we're assuming that both your Subversion client and server are running Subversion 1.5 (or later). If
either client or server isolder than version 1.5, things are more complicated: the system won't track changes automatically, and you'll
have to use painful manual methods to achieve similar results. That is, you'll always need to use the detailed merge syntax to specify
specific ranges of revisionsto replicate (see the section called “Merge Syntax: Full Disclosure” later in this chapter), and take special
care to keep track of what's already been merged and what hasn't. For this reason, we strongly recommend that you make sure your
client and server are at least at version 1.5.

Changesets

Before we proceed further, we should warn you that there's going to be alot of discussion of “changes’ in the pages ahead. A lot
of people experienced with version control systems use the terms“change” and “changeset” interchangeably, and we should clarify
what Subversion understands as a changeset.

Everyone seemsto have a dlightly different definition of changeset, or at least a different expectation of what it means for aversion
control system to have one. For our purposes, let's say that a changeset isjust acollection of changeswith aunique name. The changes
might include textual editsto file contents, modificationsto tree structure, or tweaks to metadata. |n more common speak, achangeset
isjust a patch with a name you can refer to.

In Subversion, aglobal revision number N names atree in the repository: it's the way the repository looked after the Nth commit. It's
also the name of an implicit changeset: if you compare tree Nwith tree N-1, you can derive the exact patch that was committed. For
this reason, it's easy to think of revision N as not just atree, but a changeset as well. If you use an issue tracker to manage bugs, you
can use the revision numbers to refer to particular patches that fix bugs—for example, “this issue was fixed by r9238.” Somebody
canthenrunsvn | og -r 9238 to read about the exact changeset that fixed the bug, andrunsvn di ff -c 9238 to seethe

99

Branching and Merging

patch itself. And (as you'll see shortly) Subversion's svn mer ge command is able to use revision numbers. Y ou can merge specific
changesets from one branch to another by naming them in the merge arguments: passing - ¢ 9238 to svn merge would merge
changeset r9238 into your working copy.

Keeping a Branch in Sync

Continuing with our running example, |et's suppose that a week has passed since you started working on your private branch. Y our
new feature isn't finished yet, but at the same time you know that other people on your team have continued to make important
changes in the project's/ t r unk. It's in your best interest to replicate those changes to your own branch, just to make sure they
mesh well with your changes.

Frequently keeping your branch in sync with the main development line helps prevent “surprise’ conflicts when the
oj time comes for you to fold your changes back into the trunk.

Subversion is aware of the history of your branch and knows when it divided away from the trunk. To replicate the latest, greatest
trunk changesto your branch, first make sure your working copy of the branch is“clean”—that it has no local modifications reported
by svn status. Then ssimply run;

$ pwd
/ horre/ user/ ny-cal c- branch

$ svn nmerge ~/cal ¢/trunk

--- Merging r345 through r356 into '
U button.c

] i nteger.c

$

Thisbasic syntax—svn mer ge URL—tells Subversion to merge all recent changes from the URL to the current working directory
(which is typically the root of your working copy). Also notice that we're using the caret (*) g/ntax2 to avoid having to type out
theentire/ t r unk URL.

After running the prior example, your branch working copy now contains new local modifications, and these edits are duplications
of al of the changes that have happened on the trunk since you first created your branch:

$ svn status

M .

M button.c
M i nteger.c
$

At this point, the wise thing to do islook at the changes carefully with svn diff, and then build and test your branch. Notice that the
current working directory (“. ") has also been modified; the svn diff will show that itssvn: mer gei nf o property has been either
created or modified. Thisisimportant merge-related metadata that you should not touch, sinceit will be needed by future svn merge
commands. (We'll learn more about this metadata later in the chapter.)

After performing the merge, you might also need to resolve some conflicts (just as you do with svn update) or possibly make some
small edits to get things working properly. (Remember, just because there are no syntactic conflicts doesn't mean there aren't any
semantic conflicts!) If you encounter serious problems, you can always abort the local changes by running svn revert . -R
(which will undo al local modifications) and start along “what's going on?’ discussion with your collaborators. If things look good,
however, you can submit these changes into the repository:

Thiswas introduced in svn 1.6.

100

Branching and Merging

$ svn conmit -m "Merged | atest trunk changes to ny-cal c-branch.”

Sendi ng .
Sendi ng button.c
Sendi ng i nteger.c

Transmitting file data ..
Committed revision 357.
$

At this point, your private branch is now “in sync” with the trunk, so you can rest easier knowing that as you continue to work in
isolation, you're not drifting too far away from what everyone else is doing.

Why Not Use Patches Instead?

A question may be on your mind, especialy if you're a Unix user: why bother to use svh merge at al? Why not simply use the
operating system's patch command to accomplish the same job? For example:

$ cd ny-cal c-branch

$ svn diff -r 341: HEAD ~/ calc/trunk > patchfile
$ patch -p0 < patchfile

Patching file integer.c using Plan A. ..

Hunk #1 succeeded at 147.

Hunk #2 succeeded at 164.

Hunk #3 succeeded at 241.

Hunk #4 succeeded at 249.

done

$

In this particular example, there really isn't much difference. But svn mer ge has special abilities that surpass the patch program.
The file format used by patch is quite limited; it's able to tweak file contents only. There's no way to represent changes to trees,
such as the addition, removal, or renaming of files and directories. Nor can the patch program notice changes to properties. If
Sally's change had, say, added a new directory, the output of svn diff wouldn't have mentioned it at all. svn diff outputs only the
limited patch format, so there are some ideas it simply can't express.

The svn mer ge command, however, can express changesin tree structure and properties by directly applying them to your working
copy. Even more important, this command records the changes that have been duplicated to your branch so that Subversion is
aware of exactly which changes exist in each location (see the section called “Mergeinfo and Previews”). Thisisacritical feature
that makes branch management usable; without it, users would have to manually keep notes on which sets of changes have or
haven't been merged yet.

Supposethat another week has passed. Y ou've committed more changesto your branch, and your comrades have continued to improve
the trunk as well. Once again, you'd like to replicate the latest trunk changes to your branch and bring yourself in sync. Just run the
same merge command again!

$ svn nerge ~/ calc/trunk
--- Merging r357 through r380 into '.":

] i nteger.c
U Makefil e
A READVE

$

Subversion knows which trunk changes you've already replicated to your branch, so it carefully replicates only those changes you
don't yet have. Once again, you'll have to build, test, and svn commit the local modificationsto your branch.

101

Branching and Merging

Reintegrating a Branch

What happens when you finally finish your work, though? Y our new feature is done, and you're ready to merge your branch changes
back to the trunk (so your team can enjoy the bounty of your labor). The processis simple. First, bring your branch in sync with the
trunk again, just as you've been doing al along:

$ svn nerge ~/cal c/trunk

--- Merging r381 through r385 into '
U button.c

U READVE

$ # build, test,

$ svn commit -m "Final merge of trunk changes to ny-cal c-branch."

Sendi ng .
Sendi ng button.c
Sendi ng READVE

Transmitting file data ..
Conmitted revision 390.

Now, you use svn merge with the - - r ei nt egr at e option to replicate your branch changes back into the trunk. You'll need a
working copy of / t r unk. Y ou can do thisby either doing an svn checkout, dredging up an old trunk working copy from somewhere
on your disk, or using svn switch (see the section called “ Traversing Branches’). Y our trunk working copy cannot have any local
edits or be at mixed-revisions (see the section called “Mixed-revision working copies’). While these are typically best practices for
merging, they are required when using the - - r ei nt egr at e option.

Once you have a clean working copy of the trunk, you're ready to merge your branch back into it:

$ pwd
/ hone/ user/ cal c-trunk

$ svn update # (make sure the working copy is up to date)
At revision 390.

$ svn nerge --reintegrate "/ cal c/ branches/ ny-cal c-branch
--- Merging differences between repository URLs into '
U button.c
U i nteger.c
U Makefil e
U

$ # build, test, verify,

$ svn commit -m "Merge ny-cal c-branch back into trunk!"

Sendi ng .

Sendi ng button.c

Sendi ng i nteger.c
Sendi ng Makefil e

Transmitting file data ..
Conmmitted revision 391.

Congratulations, your branch has now been remerged back into themain line of development. Noticeour useof the- - r ei nt egr at e
option this time around. The option is critical for reintegrating changes from a branch back into its original line of development—

102

Branching and Merging

don't forget it! It's needed because this sort of “merge back” is a different sort of work than what you've been doing up until now.
Previously, we had been asking svn mer ge to grab the “next set” of changes from one line of development (the trunk) and duplicate
them to another (your branch). Thisisfairly straightforward, and each time Subversion knows how to pick up whereit left off. In our
prior examples, you can see that first it merges the ranges 345:356 from trunk to branch; later on, it continues by merging the next
contiguously available range, 356:380. When doing the final sync, it merges the range 380:385.

When merging your branch back to the trunk, however, the underlying mathematics is quite different. Y our feature branch is now a
mishmash of both duplicated trunk changes and private branch changes, so there's no simple contiguous range of revisions to copy
over. By specifying the- - r ei nt egr at e option, you're asking Subversion to carefully replicate only those changes unique to your
branch. (And in fact, it does this by comparing the latest trunk tree with the latest branch tree: the resulting difference is exactly
your branch changes!)

Keep in mind that the - - r ei nt egr at e option is quite specialized in contrast to the more general nature of most Subversion
subcommand options. It supports the use case described above, but has little applicability outside of that. Because of this narrow
focus, in addition to requiring an up-to-date working copy with no mixed-revisions, it will not function in combination with most of
the other svn merge options. You'll get an error if you use any non-global options but these: - - accept ,--dry-run,--di ff 3-
cnd, - - ext ensi ons, or - - qui et .

Now that your private branch is merged to trunk, you may wish to remove it from the repository:

$ svn del ete ~/ cal c/branches/ ny-cal c-branch \
-m "Renove ny-cal c-branch, reintegrated with trunk in r391."
Committed revision 392.

But wait! Isn't the history of that branch valuable? What if somebody wants to audit the evolution of your feature someday and ook
at al of your branch changes? No need to worry. Remember that even though your branch is no longer visible in the/ br anches
directory, its existence is still an immutable part of the repository's history. A simple svn log command on the/ br anches URL
will show the entire history of your branch. Y our branch can even be resurrected at some point, should you desire (see the section
called “Resurrecting Deleted Items”).

Once a- - r ei nt egr at e merge is done from branch to trunk, the branch is no longer usable for further work. It's not able to
correctly absorb new trunk changes, nor can it be properly reintegrated to trunk again. For this reason, if you want to keep working
on your feature branch, we recommend destroying it and then re-creating it from the trunk:

$ svn delete http://svn. exanpl e. coni repos/ cal c/ branches/ nmy-cal c-branch \
-m " Renove ny-cal c-branch, reintegrated with trunk in r391."
Conmitted revision 392.

$ svn copy http://svn.exanpl e.com repos/cal ¢c/trunk \
http://svn. exanpl e. com repos/ cal c/ branches/ ny-cal c- branch
-m "Recreate my-cal c-branch from trunk@EAD. "
Conmitted revision 393.

There is another way of making the branch usable again after reintegration, without deleting the branch. See the section called
“Keeping a Reintegrated Branch Alive’.

Mergeinfo and Previews

The basic mechanism Subversion uses to track changesets—that is, which changes have been merged to which branches—is by
recording data in versioned properties. Specifically, merge data is tracked in the svn: mer gei nf o property attached to files and
directories. (If you're not familiar with Subversion properties, see the section called “ Properties’.)

Y ou can examine the property, just like any other:

103

Branching and Merging

$ cd ny-cal c-branch

$ svn propget svn:mergeinfo .
/trunk: 341- 390

$

Whileispossibleto modify svn: mer gei nf o just asyou might any other versioned property, we strongly discourage
° doing so unless you really know what you're doing.

Thesvn: nmer gei nf o property isautomatically maintained by Subversion whenever you run svn mer ge. Its value indicates which
changes made to a given path have been replicated into the directory in question. In our previous example, the path which is the
source of the merged changesis/ t r unk and the directory which has received the changesis/ br anches/ my- cal c- br anch.

Subversion aso provides a subcommand, svn mergeinfo, which can be helpful in seeing not only which changesets a directory has
absorbed, but also which changesets it's still eligible to receive. This gives a sort of preview of which changes a subsequent svn
mer ge operation would replicate to your branch.

$ cd ny-cal c-branch

Whi ch changes have already been nerged fromtrunk to branch?
$ svn nergeinfo ~/calc/trunk

r341

r342

r343

r 388

r 389

r390

Whi ch changes are still eligible to merge fromtrunk to branch?
$ svn nergeinfo ~/calc/trunk --showrevs eligible

r391

r392

r 393

r 394

r 395

$

The svn mergeinfo command requires a “ source” URL (where the changes would be coming from), and takes an optiona “target”
URL (where the changes would be merged to). If no target URL is given, it assumes that the current working directory is the target.
In the prior example, because we're querying our branch working copy, the command assumes we're interested in receiving changes
to/ br anches/ nybr anch from the specified trunk URL.

Another way to get amore precise preview of amerge operation isto usethe- - dr y- r un option:

$ svn merge N calc/trunk --dry-run
U i nteger.c

$ svn status
nothing printed, working copy is still unchanged.

The - - dry-r un option doesn't actually apply any local changes to the working copy. It shows only status codes that would be
printed in areal merge. It's useful for getting a “high-level” preview of the potential merge, for those times when running svn diff
gives too much detail.

104

Branching and Merging

dept h=enpty / pat h/t o/ mer ge/ t ar get to seeonly the changesto theimmediate target of your merge. If your
merge target was adirectory, only property differenceswill be displayed. Thisis a handy way to see the changes to the
svn: ner gei nf o property recorded by the merge operation, which will remind you about what you've just merged.

o After performing a merge operation, but before committing the results of the merge, you can use svn di ff --

Of course, the best way to preview a merge operation is to just do it! Remember, running svn merge isn't an inherently risky thing
(unless you've made local modifications to your working copy—but we've already stressed that you shouldn't be merging into such
an environment). If you don't like the results of the merge, simply runsvn revert . - Rtorevertthe changesfrom your working
copy and retry the command with different options. The mergeisn't final until you actually svn commit the results.

run into some annoying (but easily bypassed) roadblocks. For example, if the merge operation adds a new file (i.e.,
schedulesit for addition), svn revert won't actually removethefile; it simply unschedules the addition. Y ou're left with
an unversioned file. If you then attempt to run the merge again, you may get conflicts due to the unversioned file “being
in the way.” Solution? After performing a revert, be sure to clean up the working copy and remove unversioned files
and directories. The output of svn status should be as clean as possible, ideally showing no output.

o While it's perfectly fine to experiment with merges by running svn merge and svn revert over and over, you may

Undoing Changes

An extremely common use for svn merge isto roll back a change that has aready been committed. Suppose you're working away
happily on a working copy of / cal ¢/t r unk, and you discover that the change made way back in revision 303, which changed
i nt eger. c, is completely wrong. It never should have been committed. Y ou can use svnh merge to “undo” the change in your
working copy, and then commit the local modification to the repository. All you need to do is to specify areverse difference. (You
can do this by specifying - - r evi si on 303: 302, or by an equivalent - - change - 303.)

$ svn nerge -c -303 ~/cal c/trunk
--- Reverse-nerging r303 into 'integer.c':
U i nteger.c

$ svn status
M .
M i nteger.c

$ svn diff

verify that the change is renoved

$ svn comit -m "Undoing change committed in r303."
Sendi ng i nteger.c

Transmitting file data .

Committed revision 350.

As we mentioned earlier, one way to think about a repository revision is as a specific changeset. By using the - r option, you can
ask svn merge to apply a changeset, or a whole range of changesets, to your working copy. In our case of undoing a change, we're
asking svn mer ge to apply changeset #303 to our working copy backward.

Keep in mind that rolling back a change like thisis just like any other svn mer ge operation, so you should use svn status and svn
diff to confirm that your work isin the state you want it to be in, and then use svn commit to send the final version to the repository.
After committing, this particular changeset is no longer reflected in the HEAD revision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still exists in revision 303. If somebody
checks out aversion of the cal ¢ project between revisions 303 and 349, shelll till see the bad change, right?

105

Branching and Merging

Yes, that's true. When we talk about “removing” a change, we're really talking about removing it from the HEAD revision. The
original change still exists in the repository's history. For most situations, this is good enough. Most people are only interested in
tracking the HEAD of a project anyway. There are special cases, however, where you really might want to destroy all evidence of the
commit. (Perhaps somebody accidentally committed a confidential document.) This isn't so easy, it turns out, because Subversion
was deliberately designed to never lose information. Revisions are immutabl e trees that build upon one another. Removing arevision
from history would cause a domino effect, creating chaos in all subsequent revisions and possibly invalidating all working copi es’®

Resurrecting Deleted Items

The great thing about version control systemsis that information is never lost. Even when you delete afile or directory, it may be
gone from the HEAD revision, but the object still exists in earlier revisions. One of the most common questions new users ask is,
“How do | get my old file or directory back?’

The first step is to define exactly which item you're trying to resurrect. Here's a useful metaphor: you can think of every object in
the repository as existing in a sort of two-dimensional coordinate system. The first coordinate is a particular revision tree, and the
second coordinate is a path within that tree. So every version of your file or directory can be defined by a specific coordinate pair.
(Remember the “peg revision” syntax—foo.c@224—mentioned back in the section called “Peg and Operative Revisions’.)

First, you might need to use svn log to discover the exact coordinate pair you wish to resurrect. A good strategy istorunsvn | og
- - ver bose inadirectory that used to contain your deleted item. The - - ver bose (- v) option shows alist of all changed itemsin
each revision; al you need to do is find the revision in which you deleted the file or directory. Y ou can do this visually, or by using
another tool to examine the log output (via grep, or perhaps via an incremental search in an editor).

$ cd parent-dir
$ svn log -v

r808 | joe | 2003-12-26 14:29:40 -0600 (Fri, 26 Dec 2003) | 3 lines
Changed pat hs:

D /calc/trunk/real.c

M /cal c/trunk/integer.c

Added fast fourier transformfunctions to integer.c.
Renoved real .c because code now i n double.c.

In the example, we're assuming that you're looking for a deleted file r eal . ¢. By looking through the logs of a parent directory,
you've spotted that thisfile was deleted in revision 808. Therefore, the last version of the file to exist was in the revision right before
that. Conclusion: you want to resurrect the path / cal ¢/ t r unk/ r eal . ¢ from revision 807.

That was the hard part—the research. Now that you know what you want to restore, you have two different choices.

One option isto use svn mergeto apply revision 808 “in reverse.” (We aready discussed how to undo changes in the section called
“Undoing Changes’.) This would have the effect of re-adding r eal . ¢ as alocal modification. The file would be scheduled for
addition, and after acommit, the file would again exist in HEAD.

In this particular example, however, this is probably not the best strategy. Reverse-applying revision 808 would not only schedule
r eal . ¢ for addition, but the log message indicates that it would also undo certain changesto i nt eger . ¢, which you don't want.
Certainly, you could reverse-merge revision 808 and then svn revert the loca modifications to i nt eger . c, but this technique
doesn't scale well. What if 90 files were changed in revision 8087

3The Subversion project has plans, however, to someday implement acommand that would accomplish the task of permanently deleting information. In the meantime,
see the section called “svndumpfilter” for a possible workaround.

106

Branching and Merging

A second, more targeted strategy is not to use svn merge at al, but rather to use the svn copy command. Simply copy the exact
revision and path “coordinate pair” from the repository to your working copy:

$ svn copy " calc/trunk/real.c@07 ./real.c

$ svn status
A + real .c

$ svn commt -m"Resurrected real.c fromrevision 807, /calc/trunk/real.c."
Addi ng real.c

Transmitting file data .

Conmitted revision 1390.

The plussign in the status output indicates that the item isn't merely scheduled for addition, but scheduled for addition “with history.”
Subversion remembers where it was copied from. In the future, running svn log on this file will traverse back through the file's
resurrection and through all the history it had prior to revision 807. In other words, this new r eal . ¢ isn't realy new; it's a direct
descendant of the original, deleted file. Thisis usually considered a good and useful thing. If, however, you wanted to resurrect the
file without maintaining a historical link to the old file, this technique works just as well:

$ svn cat M calc/trunk/real.c@07 > ./real.c

$ svn add real .c
A real .c

$ svn conmit -m"Re-created real.c fromrevision 807."
Addi ng real.c

Transmitting file data .

Conmitted revision 1390.

Although our example shows us resurrecting a file, note that these same techniques work just as well for resurrecting deleted
directories. Also note that a resurrection doesn't have to happen in your working copy—it can happen entirely in the repository:

$ svn copy “~/calc/trunk/real.c@07 ~/ calc/trunk/ \
-m"Resurrect real.c fromrevision 807."
Commi tted revision 1390.

$ svn update
A real.c
Updated to revision 1390.

Advanced Merging

Here ends the automated magic. Sooner or later, once you get the hang of branching and merging, you're going to have to ask
Subversion to merge specific changes from one place to another. To do this, you're going to have to start passing more complicated
arguments to svn mer ge. The next section describes the fully expanded syntax of the command and discusses a number of common
scenarios that require it.

Cherrypicking

Just as the term “changeset” is often used in version control systems, so is the term cherrypicking. This word refers to the act of
choosing one specific changeset from a branch and replicating it to another. Cherrypicking may also refer to the act of duplicating

107

Branching and Merging

aparticular set of (not necessarily contiguous!) changesets from one branch to another. Thisisin contrast to more typical merging

scenarios, where the “next” contiguous range of revisionsis duplicated automatically.

Why would people want to replicate just asingle change? It comes up more often than you'd think. For example, let's go back in time
and imagine that you haven't yet merged your private feature branch back to the trunk. At the water cooler, you get word that Sally
made an interesting changeto i nt eger . ¢ on the trunk. Looking over the history of commitsto the trunk, you see that in revision
355 shefixed acritical bug that directly impacts the feature you're working on. Y ou might not be ready to merge al the trunk changes

to your branch just yet, but you certainly need that particular bug fix in order to continue your work.

$ svn diff -c 355 ~/cal c/trunk

I ndex: integer.c

--- integer.c (revision 354)

+++ integer.c (revision 355)

@@-147,7 +147,7 @@
case 6: sprintf(info->operating_system "HPFS (OS/2 or NT)");
case 7: sprintf(info->operating_system "Macintosh"); break;
case 8: sprintf(info->operating_system "Z-Systent); break;

- case 9: sprintf(info->operating system "CP/M\');

+ case 9: sprintf(info->operating_system "CP/M); break;
case 10: sprintf(info->operating_system "TOPS-20"); break;
case 11: sprintf(info->operating_system "NTFS (Wndows NT)");
case 12: sprintf(info->operating_system "QDOS"); break;

Just as you used svn diff in the prior example to examine revision 355, you can pass the same option to svn mer ge:

$ svn nerge -c 355 ~/cal c/trunk
--- Merging r355 into '.":
U i nteger.c

$ svn status
M i nteger.c

Y ou can now go through the usual testing procedures before committing this change to your branch. After the commit, Subversion
marks r355 as having been merged to the branch so that future “magic” merges that synchronize your branch with the trunk know to

skip over r355. (Merging the same change to the same branch almost always resultsin a conflict!)

$ cd ny-cal c-branch

$ svn propget svn:mergeinfo .
/trunk: 341- 349, 355

Notice that r355 isn't listed as "eligible" to nmerge, because
it's already been nerged.

$ svn mergeinfo ~/ calc/trunk --showrevs eligible

r 350

r351

r352

r353

r 354

r 356

108

Branching and Merging

r 357
r 358
r 359
r 360

$ svn nmerge ~/cal ¢/trunk

--- Merging r350 through r354 into '.":
u .

] i nteger.c

U Makefile

--- Merging r356 through r360 into '.":
u .

] i nteger.c

U button.c

Thisuse case of replicating (or backporting) bug fixesfrom one branch to another is perhapsthe most popul ar reason for cherrypicking
changes; it comes up al the time, for example, when ateam is maintaining a “release branch” of software. (We discuss this pattern
in the section called “ Release Branches”.)

svn merge command applied two independent patches to your working copy to skip over changeset 355, which your
branch already contained. There's nothing inherently wrong with this, except that it has the potential to make conflict
resolution trickier. If the first range of changes creates conflicts, you must resolve them interactively for the merge
process to continue and apply the second range of changes. If you postpone a conflict from the first wave of changes,
the whole merge command will bail out with an error message.

Q Did you natice how, in the last example, the merge invocation caused two distinct ranges of merges to be applied? The

A word of warning: while svn diff and svn merge are very similar in concept, they do have different syntax in many cases. Be sure
to read about them in Chapter 9, Subversion Complete Reference for details, or ask svn help. For example, svnh mer ge requires a
working copy path as atarget, that is, a place where it should apply the generated patch. If the target isn't specified, it assumes you
aretrying to perform one of the following common operations:

« You want to merge directory changes into your current working directory.
» You want to merge the changes in a specific file into afile by the same name that exists in your current working directory.

If you are merging adirectory and haven't specified atarget path, svn mer ge assumesthefirst case and triesto apply the changesinto
your current directory. If you are merging afile, and that file (or afile by the same name) exists in your current working directory,
svn mer ge assumes the second case and tries to apply the changes to alocal file with the same name.

Merge Syntax: Full Disclosure

Y ou've now seen some examples of the svn mer ge command, and you're about to see several more. If you're feeling confused about
exactly how merging works, you're not alone. Many users (especially those new to version control) are initially perplexed about the
proper syntax of the command and about how and when the feature should be used. But fear not, this command is actually much
simpler than you think! There's avery easy technique for understanding exactly how svh mer ge behaves.

The main source of confusion isthe name of the command. Theterm “merge” somehow denotesthat branches are combined together,
or that some sort of mysterious blending of dataisgoing on. That's not the case. A better name for the command might have been svn
diff-and-apply, because that's all that happens: two repository trees are compared, and the differences are applied to aworking copy.

If you're using svn merge to do basic copying of changes between branches, it will generally do the right thing automatically. For
example, acommand such as the following:

“At least, thisistruein Subversion 1.6 at the time of this writi ng. This behavior may improve in future versions of Subversion.

109

Branching and Merging

$ svn merge "/ cal ¢/ branches/some-branch
will attempt to duplicate any changes made on sone- br anch into your current working directory, which is presumably aworking
copy that shares some historical connection to the branch. The command is smart enough to only duplicate changesthat your working

copy doesn't yet have. If you repeat this command once a week, it will only duplicate the “newest” branch changes that happened
since you last merged.

If you choose to use the svn merge command in all its full glory by giving it specific revision ranges to duplicate, the command
takes three main arguments:

1. Aninitial repository tree (often called the left side of the comparison)
2. A final repository tree (often called the right side of the comparison)
3. A working copy to accept the differences aslocal changes (often called the target of the merge)
Once these three arguments are specified, the two trees are compared, and the differences are applied to the target working copy as
local modifications. When the command is done, the results are no different than if you had hand-edited the files or run various svn
add or svn delete commands yourself. If you like the results, you can commit them. If you don't like the results, you can simply
svn revert al of the changes.
The syntax of svn mer ge allows you to specify the three necessary arguments rather flexibly. Here are some examples:
$ svn nerge http://svn. exanpl e.com repos/ branch1@50 \

http://svn. exanpl e. coni repos/ branch2@12 \

nmy-wor ki ng- copy
$ svn nerge -r 100: 200 http://svn.exanpl e.com repos/trunk ny-worki ng-copy
$ svn nerge -r 100: 200 http://svn.exanpl e.com repos/trunk
Thefirst syntax laysout all three arguments explicitly, naming each treein the form URL@REV and naming the working copy target.
The second syntax can be used as a shorthand for situations when you're comparing two different revisions of the same URL. The

last syntax shows how the working copy argument is optional; if omitted, it defaults to the current directory.

While the first example showsthe “full” syntax of svn merge, it needs to be used very carefully; it can result in merges which do not
record any svn: mer gei nf o metadata at al. The next section talks a bit more about this.

Merges Without Mergeinfo

Subversion tries to generate merge metadata whenever it can, to make future invocations of svn merge smarter. There are still
situations, however, where svn: ner gei nf o datais not created or changed. Remember to be abit wary of these scenarios:

Merging unrelated sources
If you ask svn merge to compare two URL s that aren't related to each other, a patch will still be generated and applied to your
working copy, but no merging metadatawill be created. There's no common history between the two sources, and future “ smart”
merges depend on that common history.

Merging from foreign repositories
While it's possible to run a command such as svn nerge -r 100:200 http://svn.foreignproject.com

r epos/ t r unk, theresultant patch will also lack any historical merge metadata. At time of thiswriting, Subversion has no way
of representing different repository URLs withinthe svn: nmer gei nf o property.

110

Branching and Merging

Using - - i gnor e- ancestry

If this option is passed to svn merge, it causes the merging logic to mindlessly generate differences the same way that svn
diff does, ignoring any historical relationships. We discuss this later in the chapter in the section called “Noticing or Ignoring
Ancestry”.

Applying reverse merges from atarget's natural history

Earlier in this chapter (the section called “Undoing Changes”) we discussed how to use svn mer ge to apply a“reverse patch” as
away of rolling back changes. If this technique is used to undo a change to an object's personal history (e.g., commit r5 to the
trunk, then immediately roll back r5usingsvn nerge . -c -5), thissort of merge doesn't affect the recorded mergei nfo.’

Natural History and Implicit Mergeinfo

When a path has the svn: ner gei nf o property set on it we say it has “explicit” mergeinfo. Yes, thisimplies a path can have
“implicit” mergeinfo, too! Implicit mergeinfo, or natural history, issimply apath's own history (seethe section called “ Examining
History”) interpreted as merge tracking information. While implicit mergeinfo is largely an implementation detail, it can be a
useful abstraction for understanding merge tracking behavior.

Let's say you created ~/ t r unk in revision 100 and then later, in revision 201, created ~/ br anches/ f eat ur e- br anch
asacopy of A/t runk@00. The natural history of ~/ br anches/ f eat ur e- br anch contains al the repository paths and
revision ranges through which the history of the new branch has ever passed:

/trunk:100-200
[branches/feature-branch:201

With each new revision added to the repository, the natural history—and thus, implicit mergeinfo—of the branch continues to
expand to include those revisions until the day the branch is deleted. Here's what the implicit mergeinfo of our branch would look
like when the HEAD revision of the repository had grown to 234:

[trunk:100-200
[branches/feature-branch:201-234

Implicit mergeinfo does not actually show up inthesvn: mer gei nf o property, but Subversion acts asif it does. Thisiswhy if
you check out*/ br anches/ f eat ur e- br anch andthenrunsvn nerge ~/trunk -c 58 intheresulting working copy,
nothing happens. Subversion knows that the changes committed to 2/ t r unk in revision 58 are already present in the target's
natural history, so there's no need to try to merge them again. After al, avoiding repeated merges of changes is the primary goal
of Subversion's merge tracking featurel

More on Merge Conflicts

Just like the svn update command, svn merge applies changes to your working copy. And therefore it's also capable of creating
conflicts. The conflicts produced by svn mer ge, however, are sometimes different, and this section explains those differences.

To begin with, assume that your working copy has no local edits. When you svn update to a particular revision, the changes sent by
the server will alwaysapply “cleanly” to your working copy. The server produces the deltaby comparing two trees: avirtual snapshot
of your working copy, and the revision tree you're interested in. Because the |eft hand side of the comparison is exactly equal to what
you already have, the deltais guaranteed to correctly convert your working copy into the right hand tree.

But svn mer ge has no such guarantees and can be much more chaotic: the advanced user can ask the server to compare any two trees
at all, even ones that are unrelated to the working copy! This means there's large potential for human error. Users will sometimes

5Interestingly, after rolling back arevision like this, we wouldn't be able to reapply therevisionusingsvn nerge . -c¢ 5, sincethe mergeinfo would already list
r5 as being applied. We would have to usethe - - i gnor e- ancest ry option to make the merge command ignore the existing mergeinfo!

111

Branching and Merging

compare the wrong two trees, creating a delta that doesn't apply cleanly. svn merge will do its best to apply as much of the delta
as possible, but some parts may be impossible. Just as the Unix patch command sometimes complains about “failed hunks,” svn
mer ge will similarly complain about “skipped targets’:

$ svn nerge -r 1288:1351 http://svn. exanpl e. coni myr epos/ branch

U foo.c

0] bar. c

Ski pped missing target: 'baz.c'
U gl ub. c

U sputter.h

Conflict discovered in "glorb.h'.

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) nmine-conflict, (tc) theirs-conflict,
(s) show all options:

In the previous example, it might be the case that baz. ¢ exists in both snapshots of the branch being compared, and the resultant
delta wants to change the file's contents, but the file doesn't exist in the working copy. Whatever the case, the “skipped” message
means that the user is most likely comparing the wrong two trees; it's the classic sign of user error. When this happens, it's easy
to recursively revert al the changes created by the merge (svn revert . --recursive), delete any unversioned files or
directories |eft behind after the revert, and rerun svn mer ge with different arguments.

Also noticethat the preceding exampl e showsaconflict happeningon gl or b. h. Wealready stated that theworking copy hasnolocal
edits: how can aconflict possibly happen? Again, because the user can use svn mer ge to define and apply any old deltato the working
copy, that delta may contain textual changes that don't cleanly apply to aworking file, even if the file has no local modifications.

Another small difference between svn update and svn mer geisthe names of thefull-text files created when a conflict happens. Inthe
section called “Resolve Any Conflicts’, we saw that an update produces filesnamed f i | enane. mi ne, fi | enane. r OLDREV,
and fi | enane. r NEWREV. When svn merge produces a conflict, though, it creates three files named f i | enane. wor ki ng,
filenane.left,andfil enane. ri ght. Inthiscase, theterms“left” and “right” are describing which side of the double-tree
comparison the file came from. In any case, these differing names will help you distinguish between conflicts that happened as a
result of an update and ones that happened as aresult of a merge.

Blocking Changes

Sometimes there's a particular changeset that you don't want to be automatically merged. For example, perhaps your team's policy
is to do new development work on / t r unk, but to be more conservative about backporting changes to a stable branch you use
for releasing to the public. On one extreme, you can manually cherrypick single changesets from the trunk to the branch—just the
changesthat are stable enough to pass muster. Maybe things aren't quite that strict, though; perhaps most of thetime you'd liketo just
let svn mer ge automatically merge most changes from trunk to branch. In this case, you'd like away to mask afew specific changes
out, that is, prevent them from ever being automatically merged.

In Subversion 1.6, the only way to block a changeset isto make the system believe that the change has already been merged. To do
this, invoke a merge command with the- - r ecor d- onl y option:
$ cd ny-cal c-branch

$ svn propget svn:mergeinfo .
/trunk: 1680- 3305

Let's nake the netadata |list r3328 as al ready nerged.
$ svn merge -c 3328 --record-only ~/cal c/trunk

112

Branching and Merging

$ svn status
M

$ svn propget svn:mergeinfo .
/trunk: 1680- 3305, 3328

$ svn conmmit -m "Bl ock r3328 frombeing nerged to the branch."

Thistechniqueworks, but it'salso alittle bit dangerous. The main problem isthat we're not clearly differentiating between theideas of
“1 already have this change” and “I don't have this change, but don't currently want it.” We're effectively lying to the system, making
it think that the change was previously merged. This puts the responsibility on you—the user—to remember that the change wasn't
actually merged, it just wasn't wanted. There's no way to ask Subversion for alist of “blocked changelists.” If you want to track them
(so that you can unblock them someday) you'll need to record them in atext file somewhere, or perhapsin an invented property.

Keeping a Reintegrated Branch Alive

Thereisan aternative to destroying and re-creating a branch after reintegration. To understand why it works you need to understand
why the branch isinitialy unfit for further use after it has been reintegrated.

Let's assume you created your branch in revision A. While working on your branch, you created one or more revisions which made
changesto the branch. Before reintegrating your branch into trunk, you made afinal merge from trunk to your branch, and committed
the result of this merge asrevision B.

When reintegrating your branch into the trunk, you create a new revision X which changes the trunk. The changes made to trunk in
thisrevision X are semantically equivalent to the changes you made to your branch between revisions A and B.

If you now try to merge outstanding changes from trunk to your branch, Subversion will consider changes made in revision X as
eligible for being merged into the branch. However, since your branch already contains all the changes made in revision X, merging
these changes can result in spurious conflicts! These conflicts are often tree conflicts, especially if renames were made on the branch
or the trunk while the branch was in development.

So what can be done about this? We need to make sure that Subversion does not try to merge revision X into the branch. This can be
doneusing the- - r ecor d- onl y merge option, which was introduced in the section called “Blocking Changes’.

To carry out the record-only merge, get a working copy of the branch which was just reintegrated in revision X, and merge just
revision X from trunk into your branch, making sureto usethe - - r ecor d- onl y option.

This merge uses the cherry-picking merge syntax, which was introduced in the section called “ Cherrypicking”. Continuing with the
running example from the section called “ Reintegrating a Branch”, where revision X was revision 391:

$ cd ny-cal c-branch

$ svn update

Updated to revision 393.

$ svn nerge --record-only -c 391 "/ cal c/trunk

$ svn commit -m "Block revision 391 frombeing nmerged into ny-cal c-branch."
Sendi ng

Commi tted revision 394.

Now your branch is ready to soak up changes from the trunk again. After another sync of your branch to the trunk, you can even
reintegrate the branch a second time. If necessary, you can do another record-only merge to keep the branch alive. Rinse and repeat.

113

Branching and Merging

It should now also be apparent why deleting the branch and re-creating it has the same effect as doing the above record-only merge.
Becauserevision X is part of the natural history of the newly created branch, Subversion will never attempt to merge revision X into
the branch, avoiding spurious conflicts.

Merge-Sensitive Logs and Annotations

One of the main features of any version control system isto keep track of who changed what, and when they did it. The svn log and
svn blame commands are just the tools for this: when invoked on individua files, they show not only the history of changesets that
affected the file, but also exactly which user wrote which line of code, and when she did it.

When changes start getting replicated between branches, however, things start to get complicated. For example, if you were to ask
svn log about the history of your feature branch, it would show exactly every revision that ever affected the branch:

$ cd ny-cal c-branch
$ svn log -q

Butisthisreally an accurate picture of all the changesthat happened on the branch? What's being left out hereisthefact that revisions
390, 381, and 357 were actually the results of merging changes from the trunk. If you look at one of these logs in detail, the multiple
trunk changesets that comprised the branch change are nowhere to be seen:

$ svn log -v -r 390
r390 | user | 2002-11-22 11:01:57 -0600 (Fri, 22 Nov 2002) | 1 line
Changed pat hs:

M / branches/ ny- cal c- branch/ button. c

M / branches/ my- cal c- br anch/ READVE

Fi nal merge of trunk changes to ny-cal c-branch.

We happen to know that this merge to the branch was nothing but a merge of trunk changes. How can we see those trunk changes
as well? The answer is to use the - - use- ner ge- hi st ory (- g) option. This option expands those “child” changes that were
part of the merge.

114

Branching and Merging

$ svn log -v -r 390 -g

r390 | user | 2002-11-22 11:01:57 -0600 (Fri, 22 Nov 2002) | 1 line
Changed pat hs:

M / branches/ nmy- cal c- branch/ button. c

M / branches/ ny- cal c- br anch/ READVE

Fi nal merge of trunk changes to ny-cal c-branch.

r383 | sally | 2002-11-21 03:19:00 -0600 (Thu, 21 Nov 2002) | 2 lines
Changed pat hs:

M / branches/ nmy- cal c- branch/ button. c
Merged via: r390

Fi x inverse graphic error on button.

r382 | sally | 2002-11-20 16:57:06 -0600 (Wed, 20 Nov 2002) | 2 lines
Changed pat hs:

M / branches/ ny- cal c- br anch/ READVE
Merged via: r390

Docurent my last fix in README

By making the log operation use merge history, we see not just the revision we queried (r390), but also the two revisions that came
along on the ride with it—a couple of changes made by Sally to the trunk. Thisis a much more complete picture of history!

The svn blame command also takes the - - use- ner ge- hi st ory (- g) option. If this option is neglected, somebody |ooking at
aline-by-line annotation of but t on. ¢ may get the mistaken impression that you were responsible for the lines that fixed a certain
error:

$ svn blanme button.c
390 user retval = inverse_func(button, path);

390 user return retval;
390 user }

And while it's true that you did actually commit those three lines in revision 390, two of them were actually written by Sally back
in revision 383:

$ svn blanme button.c -g
G 383 sally retval = inverse_func(button, path);

G 383 sally return retval;
390 user }

Now we know who to really blame for those two lines of code!

Noticing or Ignoring Ancestry

When conversing with a Subversion devel oper, you might very likely hear referenceto thetermancestry. Thisword isused to describe
the relationship between two objectsin arepository: if they're related to each other, one object is said to be an ancestor of the other.

115

Branching and Merging

For example, suppose you commit revision 100, which includes a change to afile f 00. ¢. Then f 00. c@®9 is an “ancestor” of
f 00. c@L00. On the other hand, suppose you commit the deletion of f 0o. ¢ in revision 101, and then add a new file by the same
nameinrevision 102. Inthiscase, f 00. c@9 and f 00. c@.02 may appear to be related (they have the same path), but in fact are
completely different objects in the repository. They share no history or “ancestry.”

The reason for bringing this up isto point out an important difference between svn diff and svn mer ge. The former command ignores
ancestry, while the latter command is quite sensitive to it. For example, if you asked svn diff to compare revisions 99 and 102 of
f 00. ¢, you would see line-based diffs; the diff command is blindly comparing two paths. But if you asked svn merge to compare
the same two objects, it would notice that they're unrelated and first attempt to delete the old file, then add the new file; the output
would indicate a deletion followed by an add:

D foo. c
A foo. c

Most merges involve comparing trees that are ancestrally related to one another; therefore, svn mer ge defaults to this behavior.
Occasionaly, however, you may want the mer ge command to compare two unrelated trees. For example, you may have imported
two source-code trees representing different vendor releases of a software project (see the section called “Vendor Branches’). If you
ask svn mer ge to compare the two trees, you'd see the entire first tree being deleted, followed by an add of the entire second tree!
In these situations, you'll want svn mer ge to do a path-based comparison only, ignoring any relations between files and directories.
Add the - - i gnor e- ancest ry option to your merge command, and it will behave just like svn diff. (And conversely, the - -
not i ce- ancest ry option will cause svn diff to behave like the svn merge command.)

Merges and Moves

A common desireisto refactor source code, especially in Java-based software projects. Files and directories are shuffled around and
renamed, often causing great disruption to everyone working on the project. Sounds like a perfect case to use a branch, doesn't it?
Just create a branch, shuffle things around, and then merge the branch back to the trunk, right?

Alas, this scenario doesn't work so well right now and is considered one of Subversion's current weak spots. The problem is that
Subversion's svn update command isn't as robust as it should be, particularly when dealing with copy and move operations.

When you use svn copy to duplicate a file, the repository remembers where the new file came from, but it fails to transmit that
information to the client which is running svn update or svn merge. Instead of telling the client, “Copy that file you already have
to this new location,” it sends down an entirely new file. This can lead to problems, especially because the same thing happens with
renamed files. A lesser-known fact about Subversion isthat it lacks “true renames’—the svn move command is nothing more than
an aggregation of svn copy and svn delete.

For example, suppose that while working on your private branch, you renamei nt eger . ¢ towhol e. c. Effectively you've created
a new file in your branch that is a copy of the original file, and deleted the original file. Meanwhile, back on t r unk, Sally has
committed some improvementsto i nt eger . c. Now you decide to merge your branch to the trunk:

$ cd calc/trunk

$ svn nerge --reintegrate ~/cal c/branches/ ny-cal c-branch
--- Merging differences between repository URLs into '.":

D integer.c
A whole.c
U

This doesn't look so bad at first glance, but it's also probably not what you or Sally expected. The merge operation has deleted the
latest version of thei nt eger . c file (the one containing Sally's |atest changes), and blindly added your new whol e. c file—which
is a duplicate of the older version of i nt eger . c. The net effect is that merging your “rename” to the trunk has removed Sally's
recent changes from the latest revision!

116

Branching and Merging

This isn't true data loss. Sally's changes are till in the repository's history, but it may not be immediately obvious that this has
happened. The moral of this story is that until Subversion improves, be very careful about merging copies and renames from one
branch to another.

Preventing Naive Clients from Committing Merges

If you've just upgraded your server to Subversion 1.5 or later, there's a significant risk that pre-1.5 Subversion clients can mess up
your automated merge tracking. Why is this? When a pre-1.5 Subversion client performs svn merge, it doesn't modify the value of
thesvn: mer gei nf o property at all. So the subsequent commit, despite being the result of amerge, doesn't tell the repository about
the duplicated changes—that information islost. Later on, when “merge-aware” clients attempt automatic merging, they're likely to
runinto all sorts of conflicts resulting from repeated merges.

If you and your team are relying on the merge-tracking features of Subversion, you may want to configure your repository to prevent
older clientsfrom committing changes. The easy way to do thisis by inspecting the “ capabilities’ parameter inthest art - conm t

hook script. If the client reportsitself as having mer gei nf o capabilities, the hook script can alow the commit to start. If the client
doesn't report that capability, have the hook deny the commit. Example 4.1, “Merge-tracking gatekeeper start-commit hook script”
gives an example of such a hook script:

Example 4.1. Merge-tracking gatekeeper start-commit hook script

#!/ usr/ bin/ env python
i mport sys

The start-comit hook is invoked before a Subversion txn is created
in the process of doing a conmit. Subversion runs this hook

by i nvoking a program (script, executable, binary, etc.) naned
"start-conmmit' (for which this file is a tenplate)

with the follow ng ordered argunents:

[1] REPCS-PATH (the path to this repository)

[2] USER (the authenticated user attenpting to comit)

[3] CAPABILITIES (a colon-separated list of capabilities reported
by the client; see note bel ow)

HoHHHHHHHH R

capabilities = sys.argv[3].split(':")
if "mergeinfo" not in capabilities:
sys.stderr.wite("Commits from merge-tracki ng-unaware clients are
"not permitted. Please upgrade to Subversion 1.5 "
or newer.\n")

sys.exit(1)
sys. exit(0)

For more information about hook scripts, see the section called “Implementing Repository Hooks'.

The Final Word on Merge Tracking

The bottom line is that Subversion's merge-tracking feature has an extremely complex internal implementation, and the
svn: mer gei nf o property is the only window the user has into the machinery. Because the feature is relatively new, a numbers
of edge cases and possible unexpected behaviors may pop up.

Sometimes mergeinfo will appear on files that you didn't expect to be touched by an operation. Sometimes mergeinfo won't be
generated at all, when you expect it to. Furthermore, the management of mergeinfo metadata has a whole set of taxonomies and

117

Branching and Merging

behaviors around it, such as “explicit” versus “implicit” mergeinfo, “ operative” versus “inoperative’ revisions, specific mechanisms
of mergeinfo “elision,” and even “inheritance” from parent to child directories.

We've chosen not to cover these detail ed topicsin thisbook for acouple of reasons. First, thelevel of detail isabsolutely overwhelming
for atypical user. Second, as Subversion continuesto improve, wefeel that atypical user shouldn't have to understand these concepts;
they'll eventually fade into the background as pesky implementation details. All that said, if you enjoy this sort of thing, you can get a
fantastic overview in a paper posted at CollabNet's website: http://www.collab.net/community/subversion/articles/merge-info.html.

For now, if you want to steer clear of bugs and odd behaviors in automatic merging, the CollabNet article recommends that you
stick to these simple best practices:

* For short-term feature branches, follow the simple procedure described throughout the section called “Basic Merging”.

 For long-lived release branches (as described in the section called “ Common Branching Patterns’), perform merges only on the
root of the branch, not on subdirectories.

* Never merge into working copies with a mixture of working revision numbers, or with “switched” subdirectories (as described
next in the section called “Traversing Branches’). A merge target should be a working copy which represents a single location
in the repository at asingle point in time.

» Don't ever edit the svn: mer gei nf o property directly; use svn merge with the - - r ecor d- onl y option to effect a desired
change to the metadata (as demonstrated in the section called “Blocking Changes”).

» Always make sure you have complete read access to all of your merge sources, and that your target working copy has no sparse
directories.

Traversing Branches

The svn switch command transforms an existing working copy to reflect a different branch. While this command isn't strictly
necessary for working with branches, it provides a nice shortcut. In our earlier example, after creating your private branch, you
checked out a fresh working copy of the new repository directory. Instead, you can simply ask Subversion to change your working
copy of / cal ¢/t r unk to mirror the new branch location:

$ cd calc

$ svn info | grep URL
URL: http://svn.exanpl e. conirepos/cal c/trunk

$ svn swi tch "/ cal c/ branches/ ny-cal c-branch
] i nteger.c

U button.c

U Makefil e

Updated to revision 341.

$ svn info | grep URL
URL: http://svn.exanpl e. com repos/ cal ¢/ branches/ ny-cal c- branch

“Switching” aworking copy that has no local modifications to adifferent branch resultsin the working copy looking just asit would
if you'd done afresh checkout of the directory. It's usually more efficient to use this command, because often branches differ by only
asmall degree. The server sends only the minimal set of changes necessary to make your working copy reflect the branch directory.

The svn switch command also takesa - - r evi si on (- r) option, so you need not always move your working copy to the HEAD
of the branch.

118

http://www.collab.net/community/subversion/articles/merge-info.html

Branching and Merging

Of course, most projects are more complicated than our cal ¢ example, and contain multiple subdirectories. Subversion users often
follow a specific algorithm when using branches:

1. Copy the project's entire “trunk” to a new branch directory.
2. Switch only part of the trunk working copy to mirror the branch.

In other words, if a user knows that the branch work needs to happen on only a specific subdirectory, she uses svn switch to move
only that subdirectory to the branch. (Or sometimes users will switch just a single working file to the branch!) That way, the user
can continue to receive normal “trunk” updates to most of her working copy, but the switched portions will remain immune (unless
someone commits a change to her branch). Thisfeature adds awhole new dimension to the concept of a“ mixed working copy” —not
only can working copies contain a mixture of working revisions, but they can also contain a mixture of repository locations as well.

If your working copy contains a number of switched subtrees from different repository locations, it continues to function as normal.
When you update, you'll receive patches to each subtree as appropriate. When you commit, your local changes will still be applied
as asingle, atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these locations must all be within the
same repository. Subversion repositories aren't yet able to communicate with one another; that feature is planned for the future.®

Switches and Updates

Have you noticed that the output of svn switch and svn update looks the same? The switch command is actually a superset of
the update command.

When you run svn update, you're asking the repository to compare two trees. The repository does so, and then sends a description
of the differences back to the client. The only difference between svn switch and svn update is that the latter command always
compares two identical repository paths.

That is, if your working copy is a mirror of / cal ¢/t r unk, svn update will automatically compare your working copy of /
cal c/trunk to/ cal c/trunk in the HEAD revision. If you're switching your working copy to a branch, svn switch will
compare your working copy of / cal ¢/ t r unk to some other branch directory in the HEAD revision.

In other words, an update moves your working copy through time. A switch moves your working copy through time and space.

Because svn switch is essentially a variant of svn update, it shares the same behaviors; any local modifications in your working
copy are preserved when new data arrives from the repository.

Have you ever found yourself making some complex edits (in your / t r unk working copy) and suddenly realized,
@/J “Hey, these changes ought to be in their own branch?’ A great technique to do this can be summarized in two steps:

$ svn copy http://svn. exanpl e.com repos/cal c/trunk \
http://svn. exanpl e. conf repos/ cal c/ branches/ newbr anch \
-m"Create branch 'newbranch'."
Conmmitted revision 353.
$ svn switch ~/cal c/branches/ newbranch
At revision 353.

The svn switch command, like svn update, preserves your local edits. At this point, your working copy is now a
reflection of the newly created branch, and your next svn commit invocation will send your changes there.

5Y ou can, however, use svn switch with the- - r el ocat e option if the URL of your server changes and you don't want to abandon an existing working copy. See
svn switch (sw) for more information and an example.

119

Branching and Merging

Tags

Another common version control concept isatag. A tagisjust a“snapshot” of a project in time. In Subversion, this idea already
seemsto be everywhere. Each repository revision is exactly that—a snapshot of the filesystem after each commit.

However, peopl e often want to give more human-friendly namesto tags, such asr el ease- 1. 0. And they want to make snapshots
of smaller subdirectories of the filesystem. After al, it's not so easy to remember that release 1.0 of a piece of softwareisaparticular
subdirectory of revision 4822.

Creating a Simple Tag

Once again, svn copy comes to the rescue. If you want to create a snapshot of / cal ¢/t r unk exactly as it looks in the HEAD
revision, make a copy of it:

$ svn copy http://svn. exanpl e. conf repos/cal c/trunk \
http://svn. exanpl e. conm repos/cal c/tags/rel ease-1.0 \
-m"Tagging the 1.0 rel ease of the 'calc' project."

Commi tted revision 902.

Thisexample assumesthat a/ cal c/ t ags directory already exists. (If it doesn't, you can createit using svn mkdir.) After the copy
completes, thenew r el ease- 1. O directory isforever asnapshot of how the/ t r unk directory looked in the HEAD revision at the
time you made the copy. Of course, you might want to be more precise about exactly which revision you copy, in case somebody
else may have committed changes to the project when you weren't looking. So if you know that revision 901 of / cal ¢/t runk is
exactly the snapshot you want, you can specify it by passing - r 901 to the svn copy command.

But wait amoment: isn't this tag creation procedure the same procedure we used to create abranch? Yes, infact, itis. In Subversion,
there's no difference between atag and a branch. Both are just ordinary directoriesthat are created by copying. Just as with branches,
the only reason a copied directory isa“tag” is because humans have decided to treat it that way: aslong as nobody ever commitsto
the directory, it forever remains a snapshot. If people start committing to it, it becomes a branch.

If you are administering arepository, there are two approaches you can take to managing tags. Thefirst approach is“hands off”: asa
matter of project policy, decide where your tagswill live, and make sure al users know how to treat the directories they copy. (That
is, make sure they know not to commit to them.) The second approach is more paranoid: you can use one of the access control scripts
provided with Subversion to prevent anyone from doing anything but creating new copies in the tags area (see Chapter 6, Server
Configuration). The paranoid approach, however, isn't usualy necessary. If a user accidentally commits a change to atag directory,
you can simply undo the change as discussed in the previous section. Thisis version control, after all!

Creating a Complex Tag

Sometimes you may want your “snapshot” to be more complicated than asingle directory at a single revision.

For example, pretend your project is much larger than our cal ¢ example: suppose it contains a number of subdirectories and many
morefiles. In the course of your work, you may decide that you need to create aworking copy that is designed to have specific features
and bug fixes. Y ou can accomplish this by selectively backdating files or directories to particular revisions (using svn update with
the- r option liberally), by switching files and directories to particular branches (making use of svn switch), or even just by making
a bunch of local changes. When you're done, your working copy is a hodgepodge of repository locations from different revisions.
But after testing, you know it's the precise combination of data you need to tag.

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want to make a snapshot of your exact
working copy arrangement and storeit in the repository. Luckily, svn copy actually has four different uses (which you can read about
in Chapter 9, Subversion Complete Reference), including the ability to copy aworking copy tree to the repository:

120

Branching and Merging

$1s
nmy- wor ki ng- copy/

$ svn copy ny-worki ng-copy \
http://svn. exanpl e. con repos/ cal c/tags/ nmytag \
-m"Tag ny existing working copy state.™

Commi tted revision 940.

Now there is a new directory in the repository, / cal ¢/t ags/ myt ag, which is an exact snapshot of your working copy—mixed
revisions, URLS, local changes, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where you have a bunch of local changes
made to your working copy, and you'd like a collaborator to see them. Instead of running svn diff and sending a patch file (which
won't capture directory, symlink, or property changes), you can use svn copy to “upload” your working copy to a private area of
the repository. Y our collaborator can then either check out a verbatim copy of your working copy or use svn mer ge to receive your
exact changes.

While thisisanice method for uploading a quick snapshot of your working copy, note that thisis not agood way to initially create a
branch. Branch creation should be an event unto itself, and this method conflates the creation of a branch with extra changesto files,
all within asingle revision. This makes it very difficult (later on) to identify a single revision number as a branch point.

Branch Maintenance

You may have noticed by now that Subversion is extremely flexible. Because it implements branches and tags with the same
underlying mechanism (directory copies), and because branches and tags appear in normal filesystem space, many people find
Subversion intimidating. It's aimost too flexible. In this section, we'll offer some suggestions for arranging and managing your data
over time.

Repository Layout

There are some standard, recommended ways to organize arepository. Most people create at r unk directory to hold the “main line”
of development, abr anches directory to contain branch copies, and at ags directory to contain tag copies. If arepository holds
only one project, often people create these top-level directories:

/
trunk/
branches/

tags/

If a repository contains multiple projects, admins typically index their layout by project. See the section called “Planning Y our
Repository Organization” to read more about “ project roots”, but here's an example of such alayout:

/

paint/
trunk/
branches/
tagsy/

calc/
trunk/
branches/

tagy/

121

Branching and Merging

Of course, you'refreeto ignore these common layouts. Y ou can create any sort of variation, whatever works best for you or your team.
Remember that whatever you choose, it's not a permanent commitment. Y ou can reorganize your repository at any time. Because
branches and tags are ordinary directories, the svn move command can move or rename them however you wish. Switching from
one layout to another is just a matter of issuing a series of server-side moves; if you don't like the way things are organized in the
repository, just juggle the directories around.

Remember, though, that while moving directories may be easy to do, you need to be considerate of your users aswell. Y our juggling
can be disorienting to users with existing working copies. If a user has aworking copy of a particular repository directory, your svn
move operation might remove the path from the latest revision. When the user next runs svn update, shewill betold that her working
copy represents a path that no longer exists, and the user will be forced to svn switch to the new location.

Data Lifetimes

Another nice feature of Subversion's model is that branches and tags can have finite lifetimes, just like any other versioned item.
For example, suppose you eventually finish al your work on your personal branch of the cal ¢ project. After merging all of your
changesback into/ cal c/ t r unk, there's no need for your private branch directory to stick around anymore:

$ svn delete http://svn. exanpl e. conif repos/ cal c/ branches/ ny-cal c-branch \
-m "Renovi ng obsol ete branch of calc project.”

Conmitted revision 375.

And now your branch is gone. Of course, it's not really gone: the directory is simply missing from the HEAD revision, no longer
distracting anyone. If you use svn checkout, svn switch, or svn list to examine an earlier revision, you'll still be able to see your
old branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting datais very easy in Subversion. If there's
adeleted directory (or file) that you'd like to bring back into HEAD, simply use svn copy to copy it from the old revision:

$ svn copy http://svn.exanpl e.com repos/cal ¢/ branches/ ny-cal c- branch@74 \
http://svn. exanpl e. coni r epos/ cal ¢/ branches/ ny-cal c-branch \
-m "Restore ny-cal c-branch.”

Committed revision 376.

In our example, your personal branch had arelatively short lifetime: you may have created it to fix abug or implement anew feature.
When your task is done, so is the branch. In software development, though, it's also common to have two “main” branches running
side by side for very long periods. For example, suppose it's time to release a stable version of the cal ¢ project to the public, and
you know it's going to take a couple of months to shake bugs out of the software. Y ou don't want people to add new features to the
project, but you don't want to tell all developersto stop programming either. So instead, you create a*“ stable” branch of the software
that won't change much:

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \
http://svn. exanpl e. conf repos/ cal ¢/ branches/stable-1.0 \
-m"Creating stable branch of calc project.”

Conmitted revision 377.

And now developers are free to continue adding cutting-edge (or experimental) featuresto/ cal ¢/ t r unk, and you can declare a
project policy that only bug fixes are to be committed to/ cal ¢/ br anches/ st abl e- 1. 0. That is, as people continue to work
on the trunk, a human selectively ports bug fixes over to the stable branch. Even after the stable branch has shipped, you'll probably
continue to maintain the branch for along time—that is, aslong as you continue to support that release for customers. We'll discuss
this more in the next section.

122

Branching and Merging

Common Branching Patterns

There are many different uses for branching and svn merge, and this section describes the most common.

Version control is most often used for software development, so here's a quick peek at two of the most common branching/merging
patterns used by teams of programmers. If you're not using Subversion for software development, fedl free to skip this section. If
you're a software developer using version control for the first time, pay close attention, as these patterns are often considered best
practices by experienced folk. These processes aren't specific to Subversion; they're applicable to any version control system. Still,
it may help to see them described in Subversion terms.

Release Branches

Most software has atypical life cycle: code, test, release, repeat. There are two problems with this process. First, developers need
to keep writing new features while quality assurance teams take time to test supposedly stable versions of the software. New work
cannot halt while the software is tested. Second, the team almost aways needs to support older, released versions of software; if a
bug is discovered in the latest code, it most likely exists in released versions as well, and customers will want to get that bug fix
without having to wait for amajor new release.

Here's where version control can help. The typical procedure looks like this:
1. Developers commit all new work to the trunk. Day-to-day changes are committed to/ t r unk: new features, bug fixes, and so on.

2. Thetrunk is copied to a “ release” branch. When the team thinks the software is ready for release (say, a 1.0 release), / t r unk
might be copiedto/ br anches/ 1. 0.

3. Teams continue to work in parallel. One team begins rigorous testing of the release branch, while another team continues new
work (say, for version 2.0) on/ t r unk. If bugs are discovered in either location, fixes are ported back and forth as necessary. At
some point, however, even that process stops. The branch is “frozen” for final testing right before arelease.

4. The branch is tagged and released. When testing is complete, / br anches/ 1. 0 iscopiedto/t ags/ 1. 0. 0 as areference
snapshot. Thetag is packaged and rel eased to customers.

5. The branch is maintained over time. While work continues on / t r unk for version 2.0, bug fixes continue to be ported from
/trunk to/ branches/ 1. 0. When enough bug fixes have accumulated, management may decide to do a 1.0.1 release: /
branches/ 1. Oiscopiedto/tags/ 1. 0. 1, and the tag is packaged and rel eased.

Thisentire process repeats as the software matures: when the 2.0 work iscompl ete, anew 2.0 release branch is created, tested, tagged,
and eventually released. After some years, the repository ends up with a number of release branches in “maintenance” mode, and a
number of tags representing final shipped versions.

Feature Branches

A feature branch is the sort of branch that's been the dominant example in this chapter (the one you've been working on while Sally
continues to work on / t r unk). It's atemporary branch created to work on a complex change without interfering with the stability
of / t r unk. Unlike release branches (which may need to be supported forever), feature branches are born, used for awhile, merged
back to the trunk, and then ultimately deleted. They have afinite span of usefulness.

Again, project policies vary widely concerning exactly when it's appropriate to create a feature branch. Some projects never use
feature branchesat all: commitsto/ t r unk areafree-for-all. The advantage to this system isthat it's simple—nobody needsto learn
about branching or merging. The disadvantage is that the trunk code is often unstable or unusable. Other projects use branches to
an extreme: no change is ever committed to the trunk directly. Even the most trivial changes are created on a short-lived branch,
carefully reviewed, and merged to the trunk. Then the branch is deleted. This system guarantees an exceptionally stable and usable
trunk at all times, but at the cost of tremendous process overhead.

123

Branching and Merging

Most projects take amiddle-of-the-road approach. They commonly insist that / t r unk compile and passregression testsat all times.
A feature branch is required only when a change requires a large number of destabilizing commits. A good rule of thumb is to ask
this question: if the developer worked for days in isolation and then committed the large change al at once (so that / t r unk were
never destabilized), would it be too large a change to review? If the answer to that question is“yes,” the change should be developed
on afeature branch. As the developer commits incremental changes to the branch, they can be easily reviewed by peers.

Finally, there's the issue of how to best keep afeature branch in “sync” with the trunk as work progresses. As we mentioned earlier,
there's a great risk to working on a branch for weeks or months; trunk changes may continue to pour in, to the point where the two
lines of development differ so greatly that it may become a nightmare trying to merge the branch back to the trunk.

Thissituation is best avoided by regularly merging trunk changesto the branch. Make up apolicy: once aweek, merge the last week's
worth of trunk changesto the branch.

At some point, you'll be ready to merge the * synchronized” feature branch back to the trunk. To do this, begin by doing afinal merge
of the latest trunk changes to the branch. When that's done, the latest versions of branch and trunk will be absolutely identical except
for your branch changes. Y ou would then merge back with the - - r ei nt egr at e option:

$ cd trunk-worki ng- copy

$ svn update
At revision 1910.

$ svn merge --reintegrate ~/ cal ¢/ branches/ nybranch

--- Merging differences between repository URLs into '
real.c

i nteger.c

newdi rect ory

newdi rectory/ newfil e

>>CC

Another way of thinking about this pattern is that your weekly sync of trunk to branch is analogous to running svn update in a
working copy, while the final merge step is analogous to running svn commit from aworking copy. After all, what elseisaworking
copy but avery shallow private branch? It's a branch that's capable of storing only one change at atime.

Vendor Branches

As s especially the case when developing software, the data that you maintain under version control is often closely related to, or
perhaps dependent upon, someone else's data. Generally, the needs of your project will dictate that you stay as up to date as possible
with the data provided by that external entity without sacrificing the stability of your own project. This scenario playsitself out al the
time—anywherethat theinformation generated by one group of people hasadirect effect on that which is generated by another group.

For example, software devel opers might be working on an application that makes use of athird-party library. Subversion hasjust such
arelationship with the Apache Portable Runtime (APR) library (see the section called “ The Apache Portable Runtime Library”). The
Subversion source code depends on the APR library for all its portability needs. In earlier stages of Subversion's development, the
project closely tracked APR's changing API, always sticking to the “bleeding edge” of the library's code churn. Now that both APR
and Subversion have matured, Subversion attempts to synchronize with APR's library API only at well-tested, stable release points.

Now, if your project depends on someone else's information, you could attempt to synchronize that information with your own in
several ways. Most painfully, you could issue oral or written instructionsto all the contributors of your project, telling them to make
surethey have the specific versions of that third-party information that your project needs. If the third-party information is maintained
in a Subversion repository, you could also use Subversion's externals definitions to effectively “pin down” specific versions of that
information to some location in your own working copy directory (see the section called “ Externals Definitions’).

124

Branching and Merging

But sometimes you want to maintain custom modifications to third-party code in your own version control system. Returning to the
software development example, programmers might need to make modifications to that third-party library for their own purposes.
These modifications might include new functionality or bug fixes, maintained internally only until they become part of an official
release of the third-party library. Or the changes might never be relayed back to the library maintainers, existing solely as custom
tweaks to make the library further suit the needs of the software developers.

Now you face an interesting situation. Y our project could house its custom modifications to the third-party datain some disjointed
fashion, such as using patch files or full-fledged aternative versions of files and directories. But these quickly become maintenance
headaches, requiring some mechanism by which to apply your custom changes to the third-party code and necessitating regeneration
of those changes with each successive version of the third-party code that you track.

The solution to this problem is to use vendor branches. A vendor branch is adirectory tree in your own version control system that
contains information provided by a third-party entity, or vendor. Each version of the vendor's data that you decide to absorb into
your project is called a vendor drop.

Vendor branches provide two benefits. First, by storing the currently supported vendor drop in your own version control system, you
ensure that the members of your project never need to question whether they have the right version of the vendor's data. They simply
receive that correct version as part of their regular working copy updates. Second, because the data lives in your own Subversion
repository, you can store your custom changes to it in-place—you have no more need of an automated (or worse, manual) method
for swapping in your customizations.

General Vendor Branch Management Procedure

Managing vendor branches generally works like this: first, you create a top-level directory (such as/ vendor) to hold the vendor
branches. Then you import the third-party code into a subdirectory of that top-level directory. You then copy that subdirectory
into your main development branch (e.g., / t r unk) at the appropriate location. Y ou always make your local changes in the main
development branch. With each new release of the code you are tracking, you bring it into the vendor branch and merge the changes
into/ t r unk, resolving whatever conflicts occur between your local changes and the upstream changes.

An example will help to clarify this algorithm. We'll use a scenario where your development team is creating a calculator program
that links against a third-party complex number arithmetic library, libcomplex. We'll begin with the initial creation of the vendor
branch and the import of thefirst vendor drop. We'll call our vendor branch directory | i bconpl ex, and our code dropswill go into
asubdirectory of our vendor branch called cur r ent . And since svn import creates all the intermediate parent directories it needs,
we can actually accomplish both of these steps with a single command:

$ svn inport /path/to/libconplex-1.0 \
http://svn. exanpl e. conf repos/ vendor/ | i bconpl ex/ current \
-m"inmporting initial 1.0 vendor drop"

We now have the current version of the libcomplex source codein/ vendor /| i bconpl ex/ cur r ent . Now, we tag that version
(see the section called “Tags’) and then copy it into the main development branch. Our copy will create a new directory called
I i bconpl ex in our existing cal ¢ project directory. It is in this copied version of the vendor data that we will make our
customizations:

$ svn copy http://svn. exanpl e. conf repos/vendor/|ibconpl ex/current \
http://svn. exanpl e. conf repos/vendor /| i bconpl ex/ 1.0 \
-m "tagging |ibconplex-1.0"

$ svn copy http://svn. exanpl e. conirepos/vendor/libconplex/1.0 \
http://svn. exanpl e. conl repos/ cal ¢/ 1 i bconpl ex \
-m"bringing |libconmplex-1.0 into the main branch”

125

Branching and Merging

We check out our project's main branch—which now includes a copy of the first vendor drop—and we get to work customizing the
libcomplex code. Before we know it, our modified version of libcomplex is now completely integrated into our calcul ator program.7

A few weeks later, the devel opers of libcomplex release a new version of their library—version 1.1—which contains some features
and functionality that we really want. We'd like to upgrade to this new version, but without losing the customizations we made
to the existing version. What we essentially would like to do is to replace our current baseline version of libcomplex 1.0 with a
copy of libcomplex 1.1, and then re-apply the custom modifications we previously made to that library to the new version. But we
actually approach the problem from the other direction, applying the changes made to libcomplex between versions 1.0 and 1.1 to
our modified copy of it.

To perform this upgrade, we check out a copy of our vendor branch and replace the code in the cur r ent directory with the new
libcomplex 1.1 source code. We quite literally copy new files on top of existing files, perhaps exploding the libcomplex 1.1 release
tarball atop our existing files and directories. The goal hereisto make our cur r ent directory contain only the libcomplex 1.1 code
and to ensure that all that code is under version control. Oh, and we want to do this with as little version control history disturbance
as possible.

After replacing the 1.0 code with 1.1 code, svn statuswill show fileswith local modifications as well as, perhaps, some unversioned
files. If we did what we were supposed to do, the unversioned files are only those new filesintroduced in the 1.1 release of libcomplex
—we run svn add on those to get them under version control. If the 1.1 code no longer has certain files that were in the 1.0 tree, it
may be hard to notice them; you'd have to compare the two trees with some external tool and then svn delete any files present in 1.0
but not in 1.1. (Although it might also be just fine to let these same files live on in unused obscurity!) Finally, once our cur r ent
working copy contains only the libcomplex 1.1 code, we commit the changes we made to get it looking that way.

Our cur r ent branch now contains the new vendor drop. We tag the new version as 1.1 (in the same way we previously tagged
the version 1.0 vendor drop), and then merge the differences between the tag of the previous version and the new current version
into our main development branch:

$ cd wor ki ng-copi es/cal c

$ svn merge "/ vendor/libconplex/1.0 \
Al vendor /Il ibconpl ex/current \
[i bconpl ex

...# resolve all the conflicts between their changes and our changes
$ svn conmit -m"merging |libconmplex-1.1 into the main branch"

In the trivial use case, the new version of our third-party tool would look, from a files-and-directories point of view, just like the
previous version. None of the libcomplex source files would have been deleted, renamed, or moved to different locations—the new
version would contain only textual modifications against the previous one. In a perfect world, our modifications would apply cleanly
to the new version of the library, with absolutely no complications or conflicts.

But thingsaren't alwaysthat simple, and in fact it is quite common for source files to get moved around between releases of software.
This complicates the process of ensuring that our modifications are still valid for the new version of code, and things can quickly
degrade into a situation where we have to manually re-create our customizations in the new version. Once Subversion knows about
the history of a given source file—including all its previous locations—the process of merging in the new version of the library is
pretty simple. But we are responsible for telling Subversion how the source file layout changed from vendor drop to vendor drop.

svn_load_dirs.pl

Vendor drops that contain more than a few deletes, additions, and moves complicate the process of upgrading to each successive
version of the third-party data. So Subversion suppliesthe svn_load_dirs.pl script to assist with this process. This script automates
the importing steps we mentioned in the general vendor branch management procedure to make sure mistakes are minimized. Y ou

‘Andis entirely bug-free, of course!

126

Branching and Merging

will till be responsible for using the merge commands to merge the new versions of the third-party datainto your main devel opment
branch, but svn_load_dirs.pl can help you more quickly and easily arrive at that stage.

In short, svn_load_dirs.pl is an enhancement to svn import that has several important characteristics:

It canberun at any point in timeto bring an existing directory in the repository to exactly match an external directory, performing
all the necessary adds and deletes, and optionally performing moves, too.

* It takes care of complicated series of operations between which Subversion requires an intermediate commit—such as before
renaming afile or directory twice.

« It will optionally tag the newly imported directory.
« It will optionally add arbitrary properties to files and directories that match aregular expression.

svn_load_dirs.pl takes three mandatory arguments. The first argument isthe URL to the base Subversion directory to work in. This
argument is followed by the URL—relative to the first argument—into which the current vendor drop will be imported. Finally, the
third argument isthe local directory to import. Using our previous example, atypical run of svn_load_dirs.pl might look like this:

$ svn_load dirs.pl http://svn.exanpl e.comrepos/vendor/libconplex \
current \
/path/to/libcomplex-1.1

Y ou can indicate that you'd like svn_load_dirs.pl to tag the new vendor drop by passing the- t command-line option and specifying
atag name. Thistag is another URL relative to the first program argument.

$ svn_load_dirs.pl -t libconmplex-1.1 \
http://svn. exanpl e. conf repos/ vendor/ | i bconpl ex \
current \

/path/to/libconplex-1.1

Whenyourunsvn_load_dirs.pl, it examinesthe contentsof your existing “ current” vendor drop and comparesthem with the proposed
new vendor drop. In the trivial case, no files will be in one version and not the other, and the script will perform the new import
without incident. If, however, there are discrepancies in the file layouts between versions, svn_load_dirs.pl will ask you how to
resolve those differences. For example, you will have the opportunity to tell the script that you know that thefilemat h. ¢ inversion
1.0 of libcomplex was renamed to ari t hneti c. ¢ in libcomplex 1.1. Any discrepancies not explained by moves are treated as
regular additions and deletions.

The script also accepts a separate configuration file for setting properties on files and directories matching a regular expression that
are added to the repository. This configuration fileis specified to svn_load_dirs.pl using the - p command-line option. Each line of
the configuration file is a whitespace-delimited set of two or four values: a Perl-style regular expression against which to match the
added path, a control keyword (either br eak or cont), and then optionally a property name and value.

\'. png$ br eak svn: m ne-type i mage/ png
\.jpe?g$ br eak svn: m ne-type i mage/ j peg

\. nBu$ cont svn: mne-type audi o/ x- npegur |
\. mBu$ break svn:eol-style LF

Lx br eak svn: eol -style native

For each added path, the configured property changes whose regular expression matches the path are applied in order, unless the
control specificationisbr eak (which meansthat no more property changes should be applied to that path). If the control specification
iscont —an abbreviation for cont i nue—matching will continue with the next line of the configuration file.

127

Branching and Merging

Any whitespace in the regular expression, property name, or property value must be surrounded by either single or double quotes.
Y ou can escape quotes that are not used for wrapping whitespace by preceding them with a backslash (\) character. The backslash
escapes only quotes when parsing the configuration file, so do not protect any other characters beyond what is necessary for the
regular expression.

Summary

We covered a lot of ground in this chapter. We discussed the concepts of tags and branches and demonstrated how Subversion
implements these concepts by copying directories with the svn copy command. We showed how to use svn merge to copy changes
from one branch to ancther or roll back bad changes. We went over the use of svn switch to create mixed-location working copies.
And we talked about how one might manage the organization and lifetimes of branchesin arepository.

Remember the Subversion mantra: branches and tags are cheap. So don't be afraid to use them when needed!

As a helpful reminder of all the operations we discussed, here is handy reference table you can consult as you begin to make use
of branches.

Table 4.1. Branching and merging commands

Action Command

Create abranch or tag svn copy URL1 URL2

Switch aworking copy to a branch or tag svn switch URL

Synchronize a branch with trunk svn nerge trunkURL; svn conmit

See merge history or eligible changesets svn nergei nfo SOURCE TARGET

Merge a branch back into trunk svn nerge --reintegrate branchURL; svn
conmi t

Merge one specific change svn nerge -c¢ REV URL; svn conmit

Merge arange of changes svn nerge -r REV1: REV2 URL; svn conmit

Block a change from automatic merging svn nmerge -c¢ REV --record-only URL; svn
conmmi t

Preview amerge svn nmerge URL --dry-run

Abandon merge results svn revert -R.

Resurrect something from history svn copy URL@REV | ocal PATH

Undo a committed change svn nmerge -c¢ -REV URL; svn commit

Examine merge-sensitive history svn log -g; svn blane -g

Create atag from aworking copy svn copy . tagURL

Rearrange a branch or tag svn nove URL1 URL2

Remove a branch or tag svn del ete URL

128

Chapter 5. Repository Administration

The Subversion repository is the central storehouse of all your versioned data. As such, it becomes an obvious candidate for al the
love and attention an administrator can offer. While the repository is generally alow-maintenance item, it isimportant to understand
how to properly configure and care for it so that potential problems are avoided, and so actual problems are safely resolved.

In this chapter, we'll discuss how to create and configure a Subversion repository. We'll also talk about repository maintenance,
providing examples of how and when to use the svnlook and svnadmin tools provided with Subversion. We'll address some common
guestions and mistakes and give some suggestions on how to arrange the data in the repository.

If you plan to access a Subversion repository only in the role of a user whose data is under version control (i.e., via a Subversion
client), you can skip this chapter altogether. However, if you are, or wish to become, a Subversion repository administrator,” this
chapter isfor you.

The Subversion Repository, Defined

Before jJumping into the broader topic of repository administration, let's further define what a repository is. How does it look? How
does it feel? Does it take its tea hot or iced, sweetened, and with lemon? As an administrator, you'll be expected to understand the
composition of arepository both from aliteral, OS-level perspective—how arepository looks and acts with respect to non-Subversion
tools—and from alogica perspective—dealing with how datais represented inside the repository.

Seen through the eyes of a typica file browser application (such as Windows Explorer) or command-line based filesystem
navigation tools, the Subversion repository is just another directory full of stuff. There are some subdirectories with human-readable
configuration files in them, some subdirectories with some not-so-human-readable data files, and so on. Asin other areas of the
Subversion design, modularity is given high regard, and hierarchical organization is preferred to cluttered chaos. So a shallow glance
into atypical repository from a nuts-and-bolts perspective is sufficient to reveal the basic components of the repository:

$ I's repos
conf/ db/ format hooks/ |ocks/ README. txt

Here's aquick fly-by overview of what exactly you're seeing in this directory listing. (Don't get bogged down in the terminology—
detailed coverage of these components exists elsewhere in this and other chapters.)

conf

A directory containing configuration files
db

The data store for al of your versioned data
format

A filethat contains a single integer that indicates the version number of the repository layout
hooks

A directory full of hook script templates (and hook scripts themselves, once you've installed some)
locks

A directory for Subversion's repository lock files, used for tracking accessors to the repository

This may sound really prestigious and lofty, but we're just talking about anyone who isinterested in that mysterious realm beyond the working copy where everyone's
data hangs out.

129

Repository Administration

README.txt

A file whose contents merely inform its readers that they are looking at a Subversion repository

used thisdirectory to storeinformation about WebDAYV activities—mappings of high-level WebDAV protocol concepts
to Subversion commit transactions. Subversion 1.5 changed that behavior, moving ownership of the activities directory,
and the ability to configure its location, into nod_dav_svn itself. Now, new repositories will not necessarily have a
dav subdirectory unlessnmod_dav_svn isin use and hasn't been configured to store its activities database el sewhere.
See the section called “ Directives’ for more information.

: Prior to Subversion 1.5, the on-disk repository structure also always contained adav subdirectory. nod_dav_svn

Of course, when accessed via the Subversion libraries, this otherwise unremarkable collection of files and directories suddenly
becomes an implementation of avirtual, versioned filesystem, complete with customizable event triggers. Thisfilesystem hasitsown
notions of directories and files, very similar to the notions of such things held by real filesystems (such asNTFS, FAT32, ext3, etc.).
But thisisaspecia filesystem—it hangs these directories and files from revisions, keeping all the changes you've ever made to them
safely stored and forever accessible. Thisis where the entirety of your versioned data lives.

Strategies for Repository Deployment

Due largely to the simplicity of the overall design of the Subversion repository and the technologies on which it relies, creating and
configuring a repository are fairly straightforward tasks. There are a few preliminary decisions you'll want to make, but the actual
work involved in any given setup of a Subversion repository is pretty basic, tending toward mindless repetition if you find yourself
setting up multiples of these things.

Some things you'll want to consider beforehand, though, are:

» What data do you expect to live in your repository (or repositories), and how will that data be organized?
» Where will your repository live, and how will it be accessed?

» What types of access control and repository event reporting do you need?

» Which of the available types of data store do you want to use?

In this section, we'll try to help you answer those questions.

Planning Your Repository Organization

While Subversion alows you to move around versioned files and directories without any loss of information, and even provides
ways of moving whole sets of versioned history from one repository to another, doing so can greatly disrupt the workflow of those
who access the repository often and come to expect things to be at certain locations. So before creating a new repository, try to peer
into the future a bit; plan ahead before placing your data under version control. By conscientiously “laying out” your repository or
repositories and their versioned contents ahead of time, you can prevent many future headaches.

Let's assume that as repository administrator, you will be responsible for supporting the version control system for several projects.
Your first decision is whether to use a single repository for multiple projects, or to give each project its own repository, or some
compromise of these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of duplicated maintenance. A single
repository means that there is one set of hook programs, one thing to routinely back up, one thing to dump and load if Subversion
releases an incompatible new version, and so on. Also, you can move data between projects easily, without losing any historical
versioning information.

The downside of using asingle repository is that different projects may have different requirementsin terms of the repository event
triggers, such as needing to send commit notification emails to different mailing lists, or having different definitions about what

130

Repository Administration

does and does not constitute a legitimate commit. These aren't insurmountable problems, of course—it just means that all of your
hook scripts have to be sensitive to the layout of your repository rather than assuming that the whole repository is associated with a
single group of people. Also, remember that Subversion uses repository-global revision numbers. While those numbers don't have
any particular magical powers, some folks still don't like the fact that even though no changes have been made to their project lately,
the youngest revision number for the repository keeps climbing because other projects are actively adding new revisions.”

A middle-ground approach can be taken, too. For example, projects can be grouped by how well they relate to each other. Y ou might
have afew repositories with a handful of projectsin each repository. That way, projects that are likely to want to share data can do
so easily, and as new revisions are added to the repository, at least the developers know that those new revisions are at least remotely
related to everyone who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want to think about directory hierarchies

within the repositories themselves. Because Subversion uses regular directory copies for branching and tagging (see Chapter 4,
Branching and Merging), the Subversion community recommends that you choose a repository location for each project root—the
“topmost” directory that contains datarelated to that project—and then create three subdirectories beneath that root: t r unk, meaning
the directory under which the main project development occurs; br anches, which isadirectory in which to create various named
branches of the main development line; and t ags, which is a collection of tree snapshots that are created, and perhaps destroyed,
but never changed.3

For example, your repository might look like this:

cal c/

trunk/

t ags/

br anches/
cal endar/

trunk/

t ags/

br anches/
spr eadsheet /

trunk/

t ags/

br anches/

Notethat it doesn't matter where in your repository each project root is. If you have only one project per repository, the logical place
to put each project root is at the root of that project's respective repository. If you have multiple projects, you might want to arrange
them in groups inside the repository, perhaps putting projects with similar goals or shared code in the same subdirectory, or maybe
just grouping them alphabetically. Such an arrangement might look like this:

utils/
cal c/
t runk/
t ags/
br anches/
cal endar/
t runk/

2Whether founded in ignorance or in poorly considered concepts about how to derive legitimate software development metrics, global revision numbers are a silly
thing to fear, and not the kind of thing you should weigh when deciding how to arrange your projects and repositories.
3Thet runk, t ags, and br anches trio is sometimes referred to as “the TTB directories.”

131

Repository Administration

t ags/
br anches/

of ficel
spr eadsheet /
t runk/
t ags/
branches/

Lay out your repository in whatever way you see fit. Subversion does not expect or enforce aparticular layout—in itseyes, adirectory
isadirectory isadirectory. Ultimately, you should choose the repository arrangement that meets the needs of the people who work
on the projects that live there.

In the name of full disclosure, though, we'll mention another very common layout. Inthislayout, thet r unk, t ags, andbr anches
directorieslive in the root directory of your repository, and your projects are in subdirectories beneath those, like so:

t runk/
cal c/
cal endar/
spreadsheet/

t ags/
cal ¢/
cal endar/
spreadsheet/

br anches/
cal c/
cal endar/
spreadsheet/

There's nothing particularly incorrect about such alayout, but it may or may not seem asintuitive for your users. Especialy in large,
multiproject situations with many users, those users may tend to be familiar with only one or two of the projects in the repository.
But the projects-as-branch-siblings approach tends to deemphasize project individuality and focus on the entire set of projects as a
single entity. That's a social issue, though. We like our originally suggested arrangement for purely practical reasons—it's easier to
ask about (or modify, or migrate el sewhere) the entire history of a single project when there's a single repository path that holds the
entire history—past, present, tagged, and branched—for that project and that project alone.

Deciding Where and How to Host Your Repository

Before creating your Subversion repository, an obvious question you'll need to answer is where the thing is going to live. Thisis
strongly connected to myriad other questions involving how the repository will be accessed (via a Subversion server or directly), by
whom (users behind your corporate firewall or the whole world out on the open Internet), what other services you'll be providing
around Subversion (repository browsing interfaces, email-based commit notification, etc.), your data backup strategy, and so on.

We cover server choice and configuration in Chapter 6, Server Configuration, but the point we'd like to briefly make hereis simply
that the answers to some of these other questions might have implications that force your hand when deciding where your repository
will live. For example, certain deployment scenarios might require accessing the repository via a remote filesystem from multiple
computers, in which case (asyou'll read in the next section) your choice of arepository backend data store turns out not to be a choice
at all because only one of the available backends will work in this scenario.

132

Repository Administration

Addressing each possible way to deploy Subversion is both impossible and outside the scope of this book. We simply encourage you
to evaluate your options using these pages and other sources as your reference material and to plan ahead.

Choosing a Data Store

Subversion provides two options for the type of underlying data store—often referred to as*the backend” or, somewhat confusingly,
“the (versioned) filesystem”—that each repository uses. Onetype of data store keeps everything in aBerkeley DB (or BDB) database
environment; repositories that use this type are often referred to as being “BDB-backed.” The other type stores data in ordinary
flat files, using a custom format. Subversion developers have adopted the habit of referring to this latter data storage mechanism
as FSFS'—a versioned fi lesystem implementation that uses the native OS filesystem directly—rather than via a database library or
some other abstraction layer—to store data.

Table 5.1, “Repository data store comparison” gives a comparative overview of Berkeley DB and FSFS repositories.

Table5.1. Repository data store comparison

Category Feature

Reliability

Berkeley DB FSFS
Dataintegrity When properly

deployed,|Older versions had some

extremely reliable; Berkeley
DB 4.4 brings auto-recovery

rarely demonstrated, but data-
destroying bugs

Sensitivity to interruptions

Very; crashes and permission

Quiteinsensitive

problems can |eave the database
“wedged,” requiring journaled
recovery procedures

Accessibility Usable from aread-only mount |No Yes
Platform-independent storage |No Yes
Usable over network | Generally, no Yes
filesystems

Group permissionshandling |Sensitive to user umask|Works around umask problems

problems; best if accessed by

only one user
Scalability Repository disk usage Larger (especialy if logfiles|Smaller
aren't purged)

Number of revision trees Database; no problems Some older native filesystems
don't scale well with thousands
of entriesin asingle directory

Directories with many files Slower Faster

Performance Checking out latest revision No meaningful difference No meaningful difference

Slower overall, but cost is|Faster overal, but finalization
amortized across the lifetime of | delay may cause client timeouts
the commit

Large commits

There are advantages and disadvantages to each of these two backend types. Neither of themismore “official” than the other, though
the newer FSFS is the default data store as of Subversion 1.2. Both are reliable enough to trust with your versioned data. But as
you can seein Table 5.1, “Repository data store comparison”, the FSFS backend provides quite a bit more flexibility in terms of its
supported deployment scenarios. More flexibility means you have to work alittle harder to find ways to deploy it incorrectly. Those
reasons—plus the fact that not using Berkeley DB means there's one fewer component in the system—Ilargely explain why today
almost everyone uses the FSFS backend when creating new repositories.

40ften pronounced “fuzz-fuzz,” if Jack Repenning has anything to say about it. (This book, however, assumes that the reader is thinking “ eff-ess-eff-ess.”)

133

Repository Administration

Fortunately, most programs that access Subversion repositories are blissfully ignorant of which backend data store is in use. And
you aren't even necessarily stuck with your first choice of a data store—in the event that you change your mind later, Subversion
provides ways of migrating your repository's datainto another repository that uses a different backend data store. We talk more about
that later in this chapter.

The following subsections provide a more detailed look at the available backend data store types.

Berkeley DB

When the initial design phase of Subversion was in progress, the devel opers decided to use Berkeley DB for a variety of reasons,
including its open source license, transaction support, reliability, performance, API simplicity, thread safety, support for cursors,
and so on.

Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple processes accessing your Subversion
repositories don't have to worry about accidentally clobbering each other's data. The isolation provided by the transaction system is
such that for any given operation, the Subversion repository code sees a static view of the database—not a database that is constantly
changing at the hand of some other process—and can make decisions based on that view. If the decision made happens to conflict
with what another processis doing, the entire operation is rolled back asthough it never happened, and Subversion gracefully retries
the operation against a new, updated (and yet till static) view of the database.

Another great feature of Berkeley DB is hot backups—the ability to back up the database environment without taking it “offline.”
Well discuss how to back up your repository later in this chapter (in the section called “ Repository Backup”), but the benefits of
being able to make fully functional copies of your repositories without any downtime should be obvious.

Berkeley DB is also avery reliable database system when properly used. Subversion uses Berkeley DB's logging facilities, which
means that the database first writes to on-disk logfiles a description of any modifications it is about to make, and then makes the
modificationitself. Thisisto ensurethat if anything goeswrong, the database system can back up to a previous checkpoint—alocation
in the logfiles known not to be corrupt—and replay transactions until the data is restored to a usable state. See the section called
“Managing Disk Space” later in this chapter for more about Berkeley DB logfiles.

But every rose has its thorn, and so we must note some known limitations of Berkeley DB. First, Berkeley DB environments are not
portable. Y ou cannot simply copy a Subversion repository that was created on a Unix system onto a Windows system and expect
it to work. While much of the Berkeley DB database format is architecture-independent, other aspects of the environment are not.
Second, Subversion uses Berkeley DB in a way that will not operate on Windows 95/98 systems—if you need to house a BDB-
backed repository on a Windows machine, stick with Windows 2000 or later.

While Berkeley DB promises to behave correctly on network shares that meet a particular set of specifications,5 most networked
filesystem types and appliances do not actually meet those requirements. And in no case can you allow a BDB-backed repository
that resides on a network share to be accessed by multiple clients of that share at once (which quite often is the whole point of having
the repository live on anetwork share in the first place).

mysterious errorsright away, or it may be months before you discover that your repository database is subtly corrupted.

If you attempt to use Berkeley DB on a noncompliant remote filesystem, the results are unpredictable—you may see
° Y ou should strongly consider using the FSFS data store for repositories that need to live on a network share.

Finally, because Berkeley DB isalibrary linked directly into Subversion, it's more sensitive to interruptions than atypical relational
database system. Most SQL systems, for example, have a dedicated server process that mediates all access to tables. If a program
accessing the database crashes for some reason, the database daemon notices the lost connection and cleans up any mess left behind.
And because the database daemon isthe only process accessing the tabl es, applications don't need to worry about permission conflicts.
These things are not the case with Berkeley DB, however. Subversion (and programs using Subversion libraries) access the database
tables directly, which means that a program crash can |leave the database in atemporarily inconsistent, inaccessible state. When this
happens, an administrator needsto ask Berkeley DB to restoreto acheckpoint, which isahit of an annoyance. Other things can causea
repository to “wedge’ besides crashed processes, such as programs conflicting over ownership and permissions on the database files.

5Berkeley DB requires that the underlying filesystem implement strict POSIX locking semantics, and more importantly, the ability to map files directly into process
memory.

134

Repository Administration

recover Berkeley DB environments in need of such recovery. When a Subversion process attaches to a repository's
Berkeley DB environment, it uses some process accounting mechanisms to detect any unclean disconnections by
previous processes, performs any necessary recovery, and then continues on as though nothing happened. This doesn't
completely eliminate instances of repository wedging, but it does drastically reduce the amount of human interaction
required to recover from them.

: Berkeley DB 4.4 brings (to Subversion 1.4 and later) the ability for Subversion to automatically and transparently

So while a Berkeley DB repository is quite fast and scalable, it's best used by a single server process running as one user—such as
Apache's httpd or svnserve (see Chapter 6, Server Configuration)—rather than accessing it as many different usersviafil e: //
or svn+ssh: // URLs. If you're accessing a Berkeley DB repository directly as multiple users, be sure to read the section called
“Supporting Multiple Repository Access Methods’ later in this chapter.

FSFS

In mid-2004, asecond type of repository storage system—one that doesn't use adatabase at all—cameinto being. An FSFSrepository
storesthe changes associated with arevision in asinglefile, and so al of arepository's revisions can be found in a single subdirectory
full of numbered files. Transactions are created in separate subdirectories as individual files. When complete, the transaction fileis
renamed and moved into the revisions directory, thus guaranteeing that commits are atomic. And because arevision fileis permanent
and unchanging, the repository also can be backed up while “hot,” just like a BDB-backed repository.

Revision files and shards

FSFS repositories contain files that describe the changes made in a single revision, and files that contain the revision properties
associated with a single revision. Repositories created in versions of Subversion prior to 1.5 keep these filesin two directories—
one for each type of file. As new revisions are committed to the repository, Subversion drops more files into these two directories
—over time, the number of these files in each directory can grow to be quite large. This has been observed to cause performance
problems on certain network-based filesystems.

Subversion 1.5 creates FSFS-backed repositories using a slightly modified layout in which the contents of these two directories
are sharded, or scattered across several subdirectories. This can greatly reduce the time it takes the system to locate any one of
these files, and therefore increases the overall performance of Subversion when reading from the repository.

Subversion 1.6 takes the sharded layout one step further, allowing administratorsto optionally pack each of their repository shards
up into asingle multi-revision file. This can have both performance and disk usage benefits. See the section called “ Packing FSFS
filesystems’ for more information.

The FSFS revision files describe arevision's directory structure, file contents, and deltas against files in other revision trees. Unlike
a Berkeley DB database, this storage format is portable across different operating systems and isn't sensitive to CPU architecture.
Because no journaling or shared-memory files are being used, the repository can be safely accessed over a network filesystem and
examined in aread-only environment. The lack of database overhead also means the overall repository sizeis abit smaller.

FSFS has different performance characteristics, too. When committing a directory with a huge number of files, FSFSis ableto more
quickly append directory entries. On the other hand, FSFS has a longer delay when finalizing a commit while it performs tasks that
the BDB backend amortizes across the lifetime of the commit, which could in extreme cases cause clients to time out while waiting
for aresponse.

The most important distinction, however, is FSFS's imperviousness to wedging when something goes wrong. If a process using a
Berkeley DB database runs into a permissions problem or suddenly crashes, the database can be left in an unusable state until an
administrator recoversit. If the same scenarios happen to a process using an FSFS repository, the repository isn't affected at all. At
worst, some transaction data is left behind.

Creating and Configuring Your Repository

Earlier in this chapter (in the section called “ Strategies for Repository Deployment”), we looked at some of the important decisions
that should be made before creating and configuring your Subversion repository. Now, we finally get to get our hands dirty! In this

135

Repository Administration

section, we'll see how to actually create a Subversion repository and configure it to perform custom actions when special repository
events occur.

Creating the Repository

Subversion repository creationisan incredibly simpletask. The svnadmin utility that comeswith Subversion provides asubcommand
(svnadmin create) for doing just that.

$ # Create a repository
$ svnadm n create /var/svn/repos
$

Assuming that the parent directory / var / svn exists and that you have sufficient permissions to modify that directory, the previous
command creates a new repository in the directory / var / svn/ r epos, and with the default filesystem data store (FSFS). Y ou can
explicitly choose the filesystem type using the - - f s- t ype argument, which accepts as a parameter either f sf s or bdb.

$ # Create an FSFS-backed repository
$ svnadm n create --fs-type fsfs /var/svn/repos

$

Create a Berkel ey-DB-backed repository
$ svnadmin create --fs-type bdb /var/svn/repos
$

After running this simple command, you have a Subversion repository. Depending on how userswill access this new repository, you
might need to fiddle with its filesystem permissions. But since basic system administration is rather outside the scope of this text,
well leave further exploration of that topic as an exercise to the reader.

referring to repositories. Both svnadmin and svnlook are considered server-side utilities—they are used on the machine
where the repository resides to examine or modify aspects of the repository, and are in fact unable to perform tasks
across a hetwork. A common mistake made by Subversion newcomersistrying to pass URLs (even“loca” fi l e: //
ones) to these two programs.

0 The path argument to svnadmin isjust aregular filesystem path and not a URL like the svn client program uses when

Presentinthedb/ subdirectory of your repository istheimplementation of the versioned filesystem. Y our new repository's versioned
filesystem beginslife at revision 0, which is defined to consist of nothing but the top-level root (/) directory. Initially, revision 0 aso
has asingle revision property, svn: dat e, set to the time at which the repository was created.

Now that you have arepository, it's time to customize it.

examined and modified manually, you shouldn't (and shouldn't need to) tamper with the other parts of the repository
“by hand.” The svnadmin tool should be sufficient for any changes necessary to your repository, or you can look to
third-party tools (such as Berkeley DB'stool suite) for tweaking relevant subsections of the repository. Do not attempt
manual manipulation of your version control history by poking and prodding around in your repository's data storefiles!

Q While some parts of a Subversion repository—such as the configuration files and hook scripts—are meant to be

Implementing Repository Hooks

A hook is aprogram triggered by some repository event, such as the creation of anew revision or the modification of an unversioned
property. Some hooks (the so-called “pre hooks”) run in advance of a repository operation and provide a means by which to both
report what is about to happen and prevent it from happening at all. Other hooks (the “post hooks”) run after the completion of a
repository event and are useful for performing tasks that examine—but don't modify—the repository. Each hook is handed enough

136

Repository Administration

information to tell what that event is (or was), the specific repository changes proposed (or completed), and the username of the
person who triggered the event.

Thehooks subdirectory is, by default, filled with templates for various repository hooks:

$ |'s repos/ hooks/

post-commi t. t npl post - unl ock.tnpl pre-revprop-change. t npl
post - | ock. t npl pre-commit.tnpl pre-unl ock. t npl

post -revprop-change. tnpl pre-|ock. tnpl start-commit.tnpl

$

Thereisonetemplate for each hook that the Subversion repository supports; by examining the contents of those template scripts, you
can see what triggers each script to run and what datais passed to that script. Also present in many of these templates are examples of
how one might use that script, in conjunction with other Subversion-supplied programs, to perform common useful tasks. To actually
install a working hook, you need only place some executable program or script into the r epos/ hooks directory, which can be
executed as the name (such as start-commit or post-commit) of the hook.

On Unix platforms, this means supplying a script or program (which could be a shell script, a Python program, acompiled C binary,
or any number of other things) named exactly like the name of the hook. Of course, the template files are present for more than just
informational purposes—the easiest way to install ahook on Unix platformsisto simply copy the appropriate template file to anew
filethat lacksthe. t npl extension, customize the hook's contents, and ensure that the script is executable. Windows, however, uses
file extensions to determine whether a program is executable, so you would need to supply a program whose basename is the name
of the hook and whose extension is one of the special extensions recognized by Windows for executable programs, such as. exe
for programsand . bat for batch files.

environment variables are set at al, not even $PATH (or %°ATHY% under Windows). Because of this, many
administrators are baffled when their hook program runs fine by hand, but doesn't work when run by Subversion. Be
sureto explicitly set any necessary environment variablesin your hook program and/or use absol ute paths to programs.

o For security reasons, the Subversion repository executes hook programs with an empty environment—that is, no

Subversion executes hooks as the same user who owns the process that is accessing the Subversion repository. In most cases, the
repository is being accessed viaa Subversion server, so this user is the same user as whom the server runs on the system. The hooks
themselves will need to be configured with OS-level permissions that allow that user to execute them. Also, this means that any
programs or files (including the Subversion repository) accessed directly or indirectly by the hook will be accessed as the same user.
In other words, be aert to potential permission-related problems that could prevent the hook from performing the tasksit is designed
to perform.

There are several hooks implemented by the Subversion repository, and you can get details about each of them in the section called
“Repository Hooks’. As arepository administrator, you'll need to decide which hooks you wish to implement (by way of providing
an appropriately named and permissioned hook program), and how. When you make this decision, keep in mind the big picture of
how your repository isdeployed. For example, if you are using server configuration to determine which users are permitted to commit
changes to your repository, you don't need to do this sort of access control viathe hook system.

There is no shortage of Subversion hook programs and scripts that are freely available either from the Subversion community
itself or elsewhere. These scripts cover a wide range of utility—basic access control, policy adherence checking, issue tracker
integration, email- or syndication-based commit notification, and beyond. Or, if you wish towriteyour own, see Chapter 8, Embedding
Subversion.

do not modify acommit transaction using hook scripts. Whileit might be tempting to use hook scripts to automatically
correct errors, shortcomings, or policy violations present in the files being committed, doing so can cause problems.
Subversion keeps client-side caches of certain bitsof repository data, and if you change acommit transaction in thisway,
those caches become indetectably stale. Thisinconsistency can lead to surprising and unexpected behavior. Instead of
modifying the transaction, you should simply validate the transactionin the pr e- conmi t hook and reject the commit

Q While hook scripts can do almost anything, there is one dimension in which hook script authors should show restraint:

137

Repository Administration

if it does not meet the desired requirements. As abonus, your users will learn the value of careful, compliance-minded
work habits.

Berkeley DB Configuration

A Berkeley DB environment isan encapsulation of one or more databases, logfiles, region files, and configuration files. The Berkeley
DB environment has its own set of default configuration values for things such as the number of database locks allowed to be taken
out at any given time, the maximum size of the journaling logfiles, and so on. Subversion's filesystem logic additionally chooses
default values for some of the Berkeley DB configuration options. However, sometimes your particular repository, with its unique
collection of data and access patterns, might require a different set of configuration option values.

The producers of Berkeley DB understand that different applications and database environments have different requirements, so they
have provided amechanism for overriding at runtime many of the configuration valuesfor the Berkeley DB environment. BDB checks
for the presence of afile named DB_CONFI Gin the environment directory (namely, the repository’'s db subdirectory), and parsesthe
options found in that file. Subversion itself createsthis file when it creates the rest of the repository. Thefileinitially contains some
default options, as well as pointers to the Berkeley DB online documentation so that you can read about what those options do. Of
course, you are free to add any of the supported Berkeley DB optionsto your DB_CONFI Gfile. Just be aware that while Subversion
never attempts to read or interpret the contents of the file and makes no direct use of the option settingsin it, you'll want to avoid any
configuration changes that may cause Berkeley DB to behave in afashion that is at odds with what Subversion might expect. Also,
changes made to DB_CONFI Gwon't take effect until you recover the database environment (using svnadmin recover).

FSFS Configuration

As of Subversion 1.6, FSFS filesystems have severa configurable parameters which an administrator can use to fine-tune the
performance or disk usage of their repositories. You can find these options—and the documentation for them—in the db/
fsfs. conf fileintherepository.

Repository Maintenance

M aintaining a Subversion repository can be daunting, mostly dueto the complexitiesinherent in systemsthat have a database backend.
Doing the task well is all about knowing the tools—what they are, when to use them, and how. This section will introduce you to
the repository administration tools provided by Subversion and discuss how to wield them to accomplish tasks such as repository
data migration, upgrades, backups, and cleanups.

An Administrator's Toolkit

Subversion provides a handful of utilities useful for creating, inspecting, modifying, and repairing your repository. Let's look more
closely at each of those tools. Afterward, we'll briefly examine some of the utilities included in the Berkeley DB distribution that
provide functionality specific to your repository's database backend not otherwise provided by Subversion's own tools.

svnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the ability to create Subversion repositories,
this program allows you to perform several maintenance operations on those repositories. The syntax of svnadmin issimilar to that
of other Subversion command-line programs:

$ svnadmin hel p

general usage: svnadnm n SUBCOMVAND REPCS PATH [ARGS & OPTIONS ...]
Type 'svnadm n hel p <subcommand>' for help on a specific subcomrand.
Type 'svnadmin --version' to see the programversion and FS nodul es.

Avai | abl e subcommands:

138

Repository Administration

crasht est
create
deltify

Previoudly in this chapter (in the section called “ Creating the Repository”), wewere introduced to the svnadmin cr eate subcommand.
Most of the other svnadmin subcommands we will cover later in this chapter. And you can consult the section called “ svnadmin—
Subversion Repository Administration” for afull rundown of subcommands and what each of them offers.

svnlook

svnlook isatool provided by Subversion for examining the various revisions and transactions (which are revisionsin the making) in
arepository. No part of this program attemptsto change the repository. svnlook istypically used by the repository hooksfor reporting
the changes that are about to be committed (in the case of the pre-commit hook) or that were just committed (in the case of the post-
commit hook) to the repository. A repository administrator may use thistool for diagnostic purposes.

svnlook has a straightforward syntax:

$ svnl ook hel p

general usage: svnl ook SUBCOMWAND REPOS PATH [ARGS & OPTIONS ...]

Not e: any subcommand which takes the '--revision' and '--transaction'
options will, if invoked w thout one of those options, act on
the repository's youngest revision

Type 'svnl ook hel p <subcommand>'" for help on a specific subconmand.

Type 'svnlook --version' to see the programversion and FS nodul es.

Most of svnlook's subcommands can operate on either arevision or a transaction tree, printing information about the tree itself, or
how it differs from the previous revision of the repository. You usethe- -revi si on (-r)and--transacti on (-t) optionsto
specify which revision or transaction, respectively, to examine. Inthe absence of boththe- - r evi si on(-r)and- -t ransacti on
(- t) options, svnlook will examine the youngest (or HEAD) revision in the repository. So the following two commands do exactly
the same thing when 19 is the youngest revision in the repository located at / var / svn/ r epos:

$ svnl ook info /var/svn/repos
$ svnl ook info /var/svn/repos -r 19

One exception to these rules about subcommands is the svnlook youngest subcommand, which takes no options and simply prints
out the repository's youngest revision number:

$ svnl ook youngest /var/svn/repos
19
$

transactions because transactions are usually either committed (in which case, you should access them asrevision with

Keep in mind that the only transactions you can browse are uncommitted ones. Most repositories will have no such
:: the- - revi si on (- r) option) or aborted and removed.

Output from svnlook is designed to be both human- and machine-parsable. Take, as an example, the output of the svnlook info
subcommand:

$ svnl ook info /var/svn/repos

139

Repository Administration

sally

2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002)
27

Added t he usual

Geek tree.

$

The output of svnlook info consists of the following, in the order given:
1. Theauthor, followed by a newline

2. The date, followed by a newline

3. The number of charactersin the log message, followed by anewline
4. Thelog messageitself, followed by anewline

This output is human-readable, meaning items such as the datestamp are displayed using atextual representation instead of something
more obscure (such as the number of nanoseconds since the Tastee Freez guy drove by). But the output is also machine-parsable—
because the log message can contain multiple lines and be unbounded in length, svnlook provides the length of that message before
the message itself. This allows scripts and other wrappers around this command to make intelligent decisions about the log message,
such as how much memory to allocate for the message, or at least how many bytes to skip in the event that this output is not the
last bit of datain the stream.

svnlook can perform a variety of other queries: displaying subsets of bits of information we've mentioned previously, recursively
listing versioned directory trees, reporting which paths were modified in agiven revision or transaction, showing textual and property
differences made to files and directories, and so on. See the section called “ svnlook—Subversion Repository Examination” for afull
reference of svnlook's features.

svndumpfilter

While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter provides a very particular brand of
useful functionality—the ability to quickly and easily modify streams of Subversion repository history data by acting as a path-based
filter.

The syntax of syndumpfilter isasfollows:

$ svndunpfilter help

general usage: svndunpfilter SUBCOMVAND [ARGS & OPTIONS ...]

Type 'svndunpfilter hel p <subcommand>' for help on a specific subcommand.
Type 'svndunpfilter --version' to see the programversion.

Avai | abl e subcommands:
excl ude
i ncl ude
help (?, h)

Thereareonly twointeresting subcommands: svndumpfilter exclude and syndumpfilter include. They allow you to makethe choice
between implicit or explicit inclusion of paths in the stream. Y ou can learn more about these subcommands and svndumpfilter's
unique purpose later in this chapter, in the section called “Filtering Repository History”.

svnsync

The svnsync program provides all the functionality required for maintaining a read-only mirror of a Subversion repository. The
program really has one job—to transfer one repository's versioned history into another repository. And while there are few ways to

140

Repository Administration

do that, its primary strength is that it can operate remotely—the “source” and “sink”® repositories may be on different computers
from each other and from svnsync itself.

Asyou might expect, svnsync has a syntax that 1ooks very much like every other program we've mentioned in this chapter:

$ svnsync hel p

general usage: svnsync SUBCOMVAND DEST _URL [ARGS & OPTIONS .. .]
Type 'svnsync hel p <subcommand>'" for help on a specific subconmand.
Type 'svnsync --version' to see the program version and RA nodul es.

Avai | abl e subcomuands:
initialize (init)
synchroni ze (sync)
COopy- r evpr ops
i nfo
help (?, h)

$

We talk more about replicating repositories with svnsync later in this chapter (see the section called “ Repository Replication”).

fsfs-reshard.py

While not an official member of the Subversion toolchain, thefsfs-reshard.py script (foundinthet ool s/ ser ver - si de directory
of the Subversion source distribution) isauseful performance tuning tool for administrators of FSFS-backed Subversion repositories.
Asdescribed inthe sidebar Revision files and shards, FSFSrepositories use individual filesto house information about each revision.
Sometimes thesefiles all live in asingle directory; sometimes they are sharded across many directories. But the neat thing is that the
number of directories used to house these files is configurable. That's where fsfs-reshar d.py comesin.

fsfs-reshard.py reshuffles the repository's file structure into a new arrangement that reflects the requested number of sharding
subdirectories and updates the repository configuration to preserve this change. When used in conjunction with the svnadmin
upgrade command, thisis especially useful for upgrading a pre-1.5 Subversion (unsharded) repository to the latest filesystem format
and sharding itsdatafiles (which Subversion will not automatically do for you). This script can also be used for fine-tuning an already
sharded repository.

Berkeley DB utilities

If you're using a Berkeley DB repository, al of your versioned filesystem's structure and data live in a set of database tables within
thedb/ subdirectory of your repository. This subdirectory isaregular Berkeley DB environment directory and can therefore be used
in conjunction with any of the Berkeley database tools, typically provided as part of the Berkeley DB distribution.

For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically needed for Subversion repositories
has been duplicated in the svnadmin tool. For example, svnadmin list-unused-dblogs and svnadmin list-dblogs perform a subset of
what isprovided by the Berkeley db_ar chive utility, and svnadmin recover reflectsthe common use cases of thedb_recover utility.

However, there are still afew Berkeley DB utilities that you might find useful. Thedb_dump and db_load programswrite and read,
respectively, a custom file format that describes the keys and values in a Berkeley DB database. Since Berkeley databases are not
portable across machine architectures, this format is a useful way to transfer those databases from machine to machine, irrespective
of architecture or operating system. As we describe later in this chapter, you can also use svnadmin dump and svnadmin load
for similar purposes, but db_dump and db_load can do certain jobs just as well and much faster. They can also be useful if the
experienced Berkeley DB hacker needs to do in-place tweaking of the data in a BDB-backed repository for some reason, which is
something Subversion's utilitieswon't allow. Also, thedb_stat utility can provide useful information about the status of your Berkeley
DB environment, including detailed statistics about the locking and storage subsystems.

50r isthat, the " sync’?

141

Repository Administration

For more information on the Berkeley DB tool chain, visit the documentation section of the Berkeley DB section of Oracle's web
site, located at http://www.oracle.com/technol ogy/documentati on/berkel ey-db/db/.

Commit Log Message Correction

Sometimesauser will havean error in her log message (amisspelling or some misinformation, perhaps). If therepository isconfigured
(using the pr e- r evpr op- change hook; see the section called “Implementing Repository Hooks") to accept changes to this log
message after the commit is finished, the user can “fix” her log message remotely using svn propset (see svn propset (pset, ps)).
However, because of the potential to loseinformation forever, Subversion repositoriesare not, by default, configured to allow changes
to unversioned properties—except by an administrator.

If alog message needs to be changed by an administrator, this can be done using svnadmin setlog. This command changes the log
message (thesvn: | og property) on agiven revision of arepository, reading the new value from a provided file.

$ echo "Here is the new, correct |og nessage" > new og.txt
$ svnadm n setlog nyrepos new og.txt -r 388

The svnadmin setlog command, by default, is still bound by the same protections against modifying unversioned properties as a
remote clientis—thepr e- r evpr op- change and post - r evpr op- change hooks are still triggered, and therefore must be set
up to accept changes of this nature. But an administrator can get around these protections by passing the - - bypass- hooks option
to the svnadmin setlog command.

changes, backup systemsthat track unversioned property changes, and so on. In other words, be very careful about what

Remember, though, that by bypassing the hooks, you are likely avoiding such things as email notifications of property
° you are changing, and how you change it.

Managing Disk Space

While the cost of storage has dropped incredibly in the past few years, disk usageis still avalid concern for administrators seeking to
version large amounts of data. Every bit of version history information stored in the live repository needs to be backed up el sewhere,
perhaps multiple times as part of rotating backup schedules. It is useful to know what pieces of Subversion's repository data need to
remain on the live site, which need to be backed up, and which can be safely removed.

How Subversion saves disk space

To keep the repository small, Subversion uses deltification (or delta-based storage) within the repository itself. Deltification involves
encoding the representation of a chunk of data as a collection of differences against some other chunk of data. If the two pieces of
dataare very similar, this deltification resultsin storage savings for the deltified chunk—rather than taking up space equal to the size
of the original data, it takes up only enough space to say, “I look just like this other piece of data over here, except for the following
couple of changes.” The result is that most of the repository data that tends to be bulky—namely, the contents of versioned files—is
stored at a much smaller size than the original full-text representation of that data.

Whiledeltified storage has been apart of Subversion'sdesign sincethevery beginning, there have been additional improvementsmade
over the years. Subversion repositories created with Subversion 1.4 or later benefit from compression of the full-text representations
of file contents. Repositories created with Subversion 1.6 or later further enjoy the disk space savings afforded by representation
sharing, a feature which alows multiple files or file revisions with identical file content to refer to a single shared instance of that
data rather than each having their own distinct copy thereof.

database file, reducing the size of the stored values will not immediately reduce the size of the database file itself.
Berkeley DB will, however, keep internal records of unused areas of the database file and consume those areas first
before growing the size of the database file. So while ddltification doesn't produce immediate space savings, it can
drastically slow future growth of the database.

: Because all of the data that is subject to deltification in a BDB-backed repository is stored in a single Berkeley DB

142

http://www.oracle.com/technology/documentation/berkeley-db/db/

Repository Administration

Removing dead transactions

Though they are uncommon, there are circumstances in which a Subversion commit process might fail, leaving behind in the
repository the remnants of the revision-to-be that wasn't—an uncommitted transaction and al thefile and directory changes associated
with it. This could happen for several reasons. perhaps the client operation was inelegantly terminated by the user, or a network
failure occurred in the middle of an operation. Regardless of the reason, dead transactions can happen. They don't do any real harm,
other than consuming disk space. A fastidious administrator may nonethel ess wish to remove them.

Y ou can use the svnadmin Istxns command to list the names of the currently outstanding transactions:

$ svnadnin | stxns nyrepos
19

3al

a45

$

Each item in the resultant output can then be used with svnlook (and its- - t r ansact i on (- t) option) to determine who created
the transaction, when it was created, what types of changes were made in the transaction—information that is helpful in determining
whether the transaction is a safe candidate for removal! If you do indeed want to remove a transaction, its name can be passed to
svnadmin rmtxns, which will perform the cleanup of the transaction. In fact, svnadmin rmtxns can take its input directly from
the output of svnadmin Istxns!

$ svnadm n rntxns nyrepos ~svnadm n | stxns nyrepos’
$

If you use these two subcommands like this, you should consider making your repository temporarily inaccessible to clients. That
way, no one can begin a legitimate transaction before you start your cleanup. Example 5.1, “txn-info.sh (reporting outstanding
transactions)” contains a bit of shell-scripting that can quickly generate information about each outstanding transaction in your
repository.

Example 5.1. txn-info.sh (reporting outstanding transactions)

#!/ bi n/ sh

CGenerate informational output for all outstanding transactions in
a Subversion repository.

REPOS="${ 1} "

if ["x$REPCS" = x] ; then
echo "usage: $0 REPOS_PATH'
exit

fi

for TXN in “svnadnin | stxns ${REPCS}"; do

echo "---[Transaction ${TXN} J----------mmmmmmmmm oo "
svnl ook info "${REPCS}" -t "${TXN}"
done

The output of the script is basically a concatenation of several chunks of svnlook info output (see the section called “svnlook™) and
will look something like this;

$ txn-info.sh myrepos

143

Repository Administration

---[Transaction 19 J-----------------““--““- -

sally

2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)

0

---[Transaction 38l J------------mmmmm oo
harry

2001- 09- 10 16:50: 30 -0500 (Mon, 10 Sep 2001)

39

Trying to commit over a faulty network.

---[Transaction @45 J------------mmmm e
sally

2001-09-12 11:09: 28 -0500 (Wed, 12 Sep 2001)

0

$

A long-abandoned transaction usually represents some sort of failed or interrupted commit. A transaction's datestamp can provide
interesting information—for example, how likely isit that an operation begun nine months ago is till active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of information—including Apache's error and
access|ogs, Subversion's operational logs, Subversion revision history, and so on—can be employed in the decision-making process.
And of course, an administrator can often simply communicate with a seemingly dead transaction's owner (viaemail, e.g.) to verify
that the transaction is, in fact, in azombie state.

Purging unused Berkeley DB logfiles

Until recently, thelargest offender of disk space usage with respect to BDB-backed Subversion repositorieswerethelogfilesin which
Berkeley DB performs its prewrites before modifying the actual database files. These files capture all the actions taken along the
route of changing the database from one state to another—while the database files, at any given time, reflect a particular state, the
logfiles contain all of the many changes along the way between states. Thus, they can grow and accumulate quite rapidly.

Fortunately, beginning with the 4.2 release of Berkeley DB, the database environment has the ability to remove its own unused
logfiles automatically. Any repositories created using svnadmin when compiled against Berkeley DB version 4.2 or later will be
configured for this automatic logfile removal. If you don't want this feature enabled, simply passthe - - bdb- | og- keep option to
the svnadmin create command. If you forget to do this or change your mind at alater time, simply edit the DB_ CONFI Gfile found
inyour repository'sdb directory, comment out the line that containstheset _f1 ags DB_LOG _AUTOREMOVE directive, and then
run svnadmin recover on your repository to force the configuration changes to take effect. See the section called “Berkeley DB
Configuration” for more information about database configuration.

Without some sort of automatic logfileremoval in place, logfileswill accumulate asyou useyour repository. Thisisactually somewhat
of afeature of the database system—you should be able to recreate your entire database using nothing but the logfiles, so these files
can be useful for catastrophic database recovery. But typically, you'll want to archive thelogfilesthat are no longer in use by Berkeley
DB, and then remove them from disk to conserve space. Use the svnadmin list-unused-dblogs command to list the unused logfiles:

$ svnadm n |ist-unused-dbl ogs /var/svn/repos
/var/svn/repos/| og. 0000000031
/var/svn/repos/| og. 0000000032
/var/svn/repos/| og. 0000000033

$ rm svnadmin |ist-unused-dbl ogs /var/svn/repos’
di sk space recl ai med!

BDB-backed repositories whose logfiles are used as part of a backup or disaster recovery plan should not make use of
Q thelogfile autoremoval feature. Reconstruction of arepository's datafrom logfiles can only be accomplished only when

144

Repository Administration

all the logfiles are available. If some of the logfiles are removed from disk before the backup system has a chance to
copy them elsawhere, the incomplete set of backed-up logfilesis essentially useless.

Packing FSFS filesystems

As described in the sidebar Revision files and shards, FSFS-backed Subversion repositories create, by default, a new on-disk file
for each revision added to the repository. Having thousands of these files present on your Subversion server—even when housed in
separate shard directories—can lead to inefficiencies.

Thefirst problem isthat the operating system hasto reference many different files over ashort period of time. Thisleadsto inefficient
use of disk cachesand, asaresult, more time spent seeking across large disks. Because of this, Subversion pays a performance penalty
when accessing your versioned data

The second problem is abit more subtle. Because of the ways that most filesystems allocate disk space, each file claims more space
onthedisk than it actually uses. The amount of extra space required to house asinglefile can average anywherefrom 2 to 16 kilobytes
per file, depending on the underlying filesystem in use. Thistranslates directly into aper-revision disk usage penalty for FSFS-backed
repositories. The effect is most pronounced in repositories which have many small revisions, since the overhead involved in storing
the revision file quickly outgrows the size of the actual data being stored.

To solve these problems, Subversion 1.6 introduced the svnadmin pack command. By concatenating all the files of a completed
shard into a single “pack” file and then removing the original per-revision files, svnadmin pack reduces the file count within a
given shard down to just asingle file. In doing so, it aids filesystem caches and reduces (to one) the number of times a file storage
overhead penalty is paid.

Subversion can pack existing sharded repositories which have been upgraded to the 1.6 filesystem format (see svnadmin upgrade).
To do so, just run svnadmin pack on the repository:

$ svnadmi n pack /var/svn/repos
Packi ng shard 0. .. done.
Packi ng shard 1...done.
Packi ng shard 2...done.

Packi ng shard 34...done.
Packi ng shard 35...done.
Packi ng shard 36...done.
$

Because the packing process obtains the required locks before doing its work, you can run it on live repositories, or even as part of a
post-commit hook. Repacking packed shardsis legal, but will have no effect on the disk usage of the repository.

svnadmin pack has no effect on BDB-backed Subversion repositories.

Berkeley DB Recovery

As mentioned in the section called “Berkeley DB”, a Berkeley DB repository can sometimes be left in a frozen state if not closed
properly. When this happens, an administrator needsto rewind the database back into aconsistent state. Thisis unique to BDB-backed
repositories, though—if you are using FSFS-backed ones instead, this won't apply to you. And for those of you using Subversion 1.4
with Berkeley DB 4.4 or later, you should find that Subversion has become much more resilient in these types of situations. Still,
wedged Berkeley DB repositories do occur, and an administrator needs to know how to safely deal with this circumstance.

To protect the datain your repository, Berkeley DB uses alocking mechanism. This mechanism ensures that portions of the database
are not simultaneously modified by multiple database accessors, and that each process sees the data in the correct state when that
datais being read from the database. When a process needs to change something in the database, it first checks for the existence of a
lock on the target data. If the dataiis not locked, the process locks the data, makes the change it wants to make, and then unlocks the
data. Other processes are forced to wait until that lock is removed before they are permitted to continue accessing that section of the

145

Repository Administration

database. (This has nothing to do with the locks that you, as a user, can apply to versioned files within the repository; wetry to clear
up the confusion caused by this terminology collision in the sidebar The Three Meanings of “Lock”.)

In the course of using your Subversion repository, fatal errorsor interruptions can prevent aprocess from having the chanceto remove
thelocksit has placed in the database. Theresult isthat the backend database system gets“wedged.” When this happens, any attempts
to access the repository hang indefinitely (since each new accessor iswaiting for alock to go away—which isn't going to happen).

If this happens to your repository, don't panic. The Berkeley DB filesystem takes advantage of database transactions, checkpoints,
and prewrite journaling to ensure that only the most catastrophic of events’ can permanently destroy a database environment. A
sufficiently paranoid repository administrator will have made off-site backups of the repository datain some fashion, but don't head
off to the tape backup storage closet just yet.

Instead, use the following recipe to attempt to “unwedge” your repository:

1. Make sure no processes are accessing (or attempting to access) the repository. For networked repositories, this al so means shutting
down the Apache HTTP Server or svnserve daemon.

2. Become the user who owns and manages the repository. Thisisimportant, as recovering arepository while running as the wrong
user can tweak the permissions of the repository's files in such a way that your repository will till be inaccessible even after it
is“unwedged.”

3. Runthecommand svnadm n recover /var/svn/repos.Youshould see output such asthis:

Repository | ock acquired.
Pl ease wait; recovering the repository may take sone tine...

Recovery conpl et ed.
The | atest repos revision is 19.

This command may take many minutes to complete.
4. Restart the server process.

This procedure fixes amost every case of repository wedging. Make sure that you run this command as the user that owns and
manages the database, not just asr oot . Part of the recovery process might involve re-creating from scratch various database files
(shared memory regions, e.g.). Recovering asr oot will create thosefiles such that they are owned by r oot , which meansthat even
after you restore connectivity to your repository, regular users will be unable to accessit.

If the previous procedure, for some reason, does not successfully unwedge your repository, you should do two things. First, move
your broken repository directory aside (perhaps by renaming it to something like r epos. BROKEN) and then restore your latest
backup of it. Then, send an email to the Subversion usersmailing list (at <user s@ubver si on. apache. or g>) describing your
problem in detail. Data integrity is an extremely high priority to the Subversion devel opers.

Migrating Repository Data Elsewhere

A Subversion filesystem has its data spread throughout files in the repository, in a fashion generally understood by (and of interest
to) only the Subversion developers themselves. However, circumstances may arise that call for all, or some subset, of that data to
be copied or moved into another repository.

Subversion provides such functionality by way of repository dump streams. A repository dump stream (often referred to asa“ dump
file” when stored as a file on disk) is a portable, flat file format that describes the various revisions in your repository—what was
changed, by whom, when, and so on. This dump stream is the primary mechanism used to marshal versioned history—in whole or
in part, with or without modification—between repositories. And Subversion provides the tools necessary for creating and loading
these dump streams: the svnadmin dump and svhadmin load subcommands, respectively.

For example, hard drive + huge electromagnet = disaster.

146

Repository Administration

an RFC 822 format, the same type of format used for most email), it is not a plain-text file format. It is a binary file
format, highly sensitive to meddling. For example, many text editors will corrupt the file by automatically converting
line endings.

Q While the Subversion repository dump format contains human-readable portions and a familiar structure (it resembles

There are many reasons for dumping and loading Subversion repository data. Early in Subversion's life, the most common reason
was due to the evolution of Subversionitself. As Subversion matured, there were times when changes made to the backend database
schema caused compatibility issues with previous versions of the repository, so users had to dump their repository data using the
previous version of Subversion and load it into a freshly created repository with the new version of Subversion. Now, these types of
schema changes haven't occurred since Subversion's 1.0 release, and the Subversion devel opers promise not to force users to dump
and load their repositories when upgrading between minor versions (such as from 1.3 to 1.4) of Subversion. But there are still other
reasons for dumping and loading, including re-deploying a Berkeley DB repository on a new OS or CPU architecture, switching
between the Berkeley DB and FSFS backends, or (as well cover later in this chapter in the section called “Filtering Repository
History”) purging versioned data from repository history.

about uncommitted transactions, user locks on filesystem paths, repository or server configuration customizations

The Subversion repository dump format describes versioned repository changes only. It will not carry any information
O/ (including hook scripts), and so on.

Whatever your reason for migrating repository history, using the svnadmin dump and svnadmin load subcommands is
straightforward. svnadmin dump will output arange of repository revisionsthat are formatted using Subversion's custom filesystem
dump format. The dump format is printed to the standard output stream, while informative messages are printed to the standard error
stream. Thisallowsyou to redirect the output stream to afile while watching the status output in your terminal window. For example:

$ svnl ook youngest nyrepos

26

$ svnadm n dunp nyrepos > dunpfile
* Dunped revision 0.

* Dunped revision 1.

* Dunped revision 2.

*

Dunped revi sion 25.
* Dunped revision 26.

At the end of the process, you will have asingle file (dunpf i | e in the previous example) that contains all the data stored in your
repository in the requested range of revisions. Note that svnadmin dump is reading revision trees from the repository just like any
other “reader” process would (e.g., svn checkout), so it's safe to run this command at any time.

The other subcommand in the pair, svhadmin load, parses the standard input stream as a Subversion repository dump file and
effectively replays those dumped revisionsinto the target repository for that operation. It also gives informative feedback, thistime
using the standard output stream:

$ svnadm n | oad new epos < dunpfile

<<< Started new txn, based on original revision 1
* adding path : A ... done.
* adding path : A/B ... done.

——————— Committed newrev 1 (loaded fromoriginal rev 1) >>>
<<< Started new txn, based on original revision 2

* editing path : A/nu ... done.
* editing path : ADGrho ... done.

147

Repository Administration

——————— Committed new rev 2 (loaded fromoriginal rev 2) >>>

<<< Started new txn, based on original revision 25
* editing path : A/D/gamma ... done.

——————— Committed new rev 25 (|l oaded fromoriginal rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/Z/ zeta ... done.
* editing path : A/nu ... done.

——————— Committed new rev 26 (|l oaded fromoriginal rev 26) >>>

The result of aload is new revisions added to a repository—the same thing you get by making commits against that repository
from aregular Subversion client. Just as in a commit, you can use hook programs to perform actions before and after each of the
commits made during a load process. By passing the - - use- pr e- commi t - hook and - - use- post - conmi t - hook options
to svnadmin load, you can instruct Subversion to execute the pre-commit and post-commit hook programs, respectively, for each
loaded revision. Y ou might use these, for example, to ensure that |oaded revisions pass through the same validation steps that regular
commits pass through. Of course, you should use these options with care—if your post-commit hook sends emails to a mailing list
for each new commit, you might not want to spew hundreds or thousands of commit emailsin rapid succession at that list! You can
read more about the use of hook scripts in the section called “Implementing Repository Hooks'.

Note that because svnadmin uses standard input and output streams for the repository dump and load processes, people who are
feeling especially saucy can try things such as this (perhaps even using different versions of svnadmin on each side of the pipe):

$ svnadm n create new epos
$ svnadm n dunp ol drepos | svnadm n | oad new epos

By default, the dump file will be quite large—much larger than the repository itself. That's because by default every version of every
fileis expressed as afull text in the dump file. Thisisthe fastest and simplest behavior, and it's nice if you're piping the dump data
directly into some other process (such as a compression program, filtering program, or loading process). But if you're creating a
dump file for longer-term storage, you'll likely want to save disk space by using the - - del t as option. With this option, successive
revisions of files will be output as compressed, binary differences—just as file revisions are stored in a repository. This option is
slower, but it resultsin a dump file much closer in size to the original repository.

We mentioned previously that svnadmin dump outputs arange of revisions. Usethe - - r evi si on (- r) option to specify asingle
revision, or arange of revisions, to dump. If you omit this option, all the existing repository revisions will be dumped.

$ svnadm n dunp nyrepos -r 23 > rev-23.dunpfile
$ svnadmi n dunp myrepos -r 100: 200 > revs-100-200. dunpfile

As Subversion dumps each new revision, it outputs only enough information to allow a future loader to re-create that revision based
on the previous one. In other words, for any given revision in the dump file, only the items that were changed in that revision will
appear in the dump. The only exception to this rule is the first revision that is dumped with the current svnadmin dump command.

By default, Subversion will not express the first dumped revision as merely differences to be applied to the previous revision. For
one thing, there is no previous revision in the dump file! And second, Subversion cannot know the state of the repository into which
the dump datawill be loaded (if it ever is). To ensure that the output of each execution of svnadmin dump is self-sufficient, the first
dumped revision is, by default, afull representation of every directory, file, and property in that revision of the repository.

148

Repository Administration

However, you can change this default behavior. If you add the- - i ncr enent al option when you dump your repository, svnadmin
will compare the first dumped revision against the previous revision in the repository—the same way it treats every other revision
that gets dumped. It will then output the first revision exactly asit does therest of the revisions in the dump range—mentioning only
the changes that occurred in that revision. The benefit of thisis that you can create several small dump files that can be loaded in
succession, instead of one large one, like so:

$ svnadm n dunp nmyrepos -r 0:1000 > dunpfilel
$ svnadm n dunp myrepos -r 1001: 2000 --incremental > dunpfile2
$ svnadm n dunp nmyrepos -r 2001: 3000 --incremental > dunpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadm n | oad new epos < dunpfilel
$ svnadm n | oad new epos < dunpfile2
$ svnadm n | oad new epos < dunpfile3

Another neat trick you can perform with this - - i ncr enent al option involves appending to an existing dump file a new range
of dumped revisions. For example, you might have apost - conmi t hook that ssimply appends the repository dump of the single
revision that triggered the hook. Or you might have a script that runs nightly to append dump file data for all the revisions that were
added to the repository since the last time the script ran. Used like this, svnadmin dump can be one way to back up changes to your
repository over time in case of a system crash or some other catastrophic event.

The dump format can also be used to merge the contents of several different repositories into a single repository. By using the
- - par ent - di r option of svnadmin load, you can specify a hew virtual root directory for the load process. That means if you
have dump filesfor three repositories—say cal c- dunpfi |l e,cal - dunpfi |l e,andss- dunpfi | e—you canfirst create anew
repository to hold them all:

$ svnadm n create /var/svn/projects

$

Then, make new directories in the repository that will encapsulate the contents of each of the three previous repositories:

$ svn nkdir -m"Initial project roots" \
file://lvar/svn/projects/calc \
file://lvar/svn/projects/cal endar \
file:///lvar/svn/projects/spreadsheet

Committed revision 1.

$

Lastly, load the individual dump filesinto their respective locations in the new repository:

$ svnadmin | oad /var/svn/projects --parent-dir calc < cal c-dunpfile
$ svnadmin | oad /var/svn/projects --parent-dir calendar < cal-dunpfile
$ svnadmin | oad /var/svn/projects --parent-dir spreadsheet < ss-dunpfile

Well mention one final way to use the Subversion repository dump format—conversion from a different storage mechanism or
version control system altogether. Because the dump file format is, for the most part, human-readable, it should be relatively easy
to describe generic sets of changes—each of which should be treated as a new revision—using this file format. In fact, the cvs2svn

149

Repository Administration

utility (seethe section called “ Converting a Repository from CV Sto Subversion”) uses the dump format to represent the contents of
aCVSrepository so that those contents can be copied into a Subversion repository.

Filtering Repository History

Since Subversion stores your versioned history using, at the very least, binary differencing agorithms and data compression
(optionally inacompletely opague database system), attempting manual tweaksisunwiseif not quite difficult, and at any rate strongly
discouraged. And once data has been stored in your repository, Subversion generally doesn't provide an easy way to remove that
data.® But inevitably, there will be times when you would like to manipulate the history of your repository. Y ou might need to strip
out all instances of afile that was accidentally added to the repository (and shouldn't be there for whatever reason).9 Or, perhapsyou
have multiple projects sharing a single repository, and you decide to split them up into their own repositories. To accomplish tasks
such as these, administrators need a more manageable and malleable representation of the datain their repositories—the Subversion
repository dump format.

As we described earlier in the section called “Migrating Repository Data Elsewhere”, the Subversion repository dump format is a
human-readabl e representation of the changes that you've made to your versioned data over time. Use the svnadmin dump command
to generate the dump data, and svnadmin load to populate a new repository with it. The great thing about the human-readability
aspect of the dump format is that, if you aren't careless about it, you can manually inspect and modify it. Of course, the downside
isthat if you have three years worth of repository activity encapsulated in what is likely to be a very large dump file, it could take
you along, long time to manually inspect and modify it.

That's where svndumpfilter becomes useful. This program acts as a path-based filter for repository dump streams. Simply give it
either alist of paths you wish to keep or alist of paths you wish to not keep, and then pipe your repository dump data through this
filter. Theresult will be amodified stream of dump datathat contains only the versioned paths you (explicitly or implicitly) requested.

Let'slook at arealistic example of how you might use this program. Earlier in this chapter (see the section called “Planning Y our
Repository Organization™), we discussed the process of deciding how to choose alayout for the datain your repositories—using one
repository per project or combining them, arranging stuff within your repository, and so on. But sometimes after new revisions start
flying in, you rethink your layout and would like to make some changes. A common change is the decision to move multiple projects
that are sharing a single repository into separate repositories for each project.

Our imaginary repository contains three projects: cal ¢, cal endar, and spr eadsheet . They have been living side-by-side in
alayout like this:

/

calc/
trunk/
branches/
tagy/

calendar/
trunk/
branches/
tage/

spreadshest/
trunk/
branches/

tage/

To get these three projects into their own repositories, we first dump the whol e repository:

8That's rather the reason you use version control at all, right?
SConscious, cautious removal of certain bits of versioned data is actually supported by real use cases. That's why an “obliterate” feature has been one of the most
highly requested Subversion features, and one which the Subversion developers hope to soon provide.

150

Repository Administration

svnadm n dunp /var/svn/repos > repos-dunmpfile
Dunped revi sion 0.
Dunped revi sion 1.
Dunped revi sion 2.
Dunped revi sion 3.

* ok kLB

Next, run that dump file through the filter, each time including only one of our top-level directories. This resultsin three new dump
files:

$ svndunmpfilter include calc < repos-dunpfile > cal c-dunpfile
$ svndunpfilter include cal endar < repos-dunpfile > cal -dunpfile
$ svndunpfilter include spreadsheet < repos-dunpfile > ss-dunpfile

At this point, you have to make a decision. Each of your dump fileswill create avalid repository, but will preserve the paths exactly
asthey were in the original repository. This means that even though you would have arepository solely for your cal ¢ project, that
repository would still have atop-level directory named cal c. If you want your t r unk, t ags, and br anches directoriesto live
in the root of your repository, you might wish to edit your dump files, tweaking the Node- pat h and Node- copyf r om pat h
headers so that they no longer have that first cal ¢/ path component. Also, you'll want to remove the section of dump data that
createsthe cal c directory. It will look something like the following:

Node- pat h: cal c
Node- acti on: add
Node- ki nd: dir
Content-length: O

automatically convert end-of-line characters to the native format (e.g., \ r \ n to\ n), as the content will then not agree

If you do plan on manually editing the dump file to remove a top-level directory, make sure your editor is not set to
Q with the metadata. Thiswill render the dump file useless.

All that remains now is to create your three new repositories, and load each dump file into the right repository, ignoring the UUID
found in the dump stream:

$ svnadnin create calc

$ svnadmn load --ignore-uuid calc < cal c-dunpfile

<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : button.c ... done.

$ svnadm n create cal endar

$ svnadmn |load --ignore-uuid cal endar < cal -dunpfile

<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : cal.c ... done.

$ svnadm n create spreadsheet

151

Repository Administration

$ svnadm n |load --ignore-uuid spreadsheet < ss-dunpfile
<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : ss.c ... done.
$

Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty” revisions. If a given revision contains
only changesto paths that werefiltered out, that now-empty revision could be considered uninteresting or even unwanted. So to give
the user control over what to do with those revisions, svndumpfilter provides the following command-line options:

--drop-enpty-revs
Do not generate empty revisions at all—just omit them.
--renunber-revs

If empty revisions are dropped (using the - - dr op- enpt y-r evs option), change the revision numbers of the remaining
revisions so that there are no gaps in the numeric sequence.

- - preserve-revprops

If empty revisions are not dropped, preserve the revision properties (log message, author, date, custom properties, etc.) for those
empty revisions. Otherwise, empty revisionswill contain only the original datestamp, and a generated |og message that indicates
that this revision was emptied by svndumpfilter.

While svndumpfilter can be very useful and ahuge timesaver, there are unfortunately a couple of gotchas. First, this utility isoverly
sensitive to path semantics. Pay attention to whether paths in your dump file are specified with or without leading slashes. You'll
want to look at the Node- pat h and Node- copyf r om pat h headers.

Node- pat h: spreadsheet/ Makefil e

If the paths have leading slashes, you should include leading slashes in the paths you pass to svndumpfilter include and
svndumpfilter exclude (and if they don't, you shouldn't). Further, if your dump file has an inconsistent usage of leading slashes for
some reason, *° you should probably normalize those paths so that they all have, or all lack, leading slashes.

Also, copied paths can give you some trouble. Subversion supports copy operations in the repository, where a new path is created
by copying some already existing path. It is possible that at some point in the lifetime of your repository, you might have copied a
file or directory from some location that svndumpfilter is excluding, to alocation that it isincluding. To make the dump data self-
sufficient, syndumpfilter needsto still show the addition of the new path—including the contents of any files created by the copy—
and not represent that addition as a copy from a source that won't exist in your filtered dump data stream. But because the Subversion
repository dump format shows only what was changed in each revision, the contents of the copy source might not be readily available.
If you suspect that you have any copies of this sort in your repository, you might want to rethink your set of included/excluded paths,
perhaps including the paths that served as sources of your troublesome copy operations, too.

Finally, svndumpfilter takes path filtering quite literally. If you are trying to copy the history of a project rooted at t r unk/ nmy-

pr oj ect and move it into arepository of its own, you would, of course, use the svndumpfilter include command to keep all the
changesinand under t r unk/ ny- pr oj ect . But the resultant dump file makes no assumptions about the repository into which you
plan to load this data. Specifically, the dump data might begin with the revision that added thet r unk/ my- pr oj ect directory, but
it will not contain directives that would create the t r unk directory itself (becauset r unk doesn't match the include filter). You'll
need to make sure that any directories that the new dump stream expects to exist actually do exist in the target repository before
trying to load the stream into that repository.

Owhile svnadmin dump has a consistent leading slash policy (to not include them), other programs that generate dump data might not be so consistent.

152

Repository Administration

Repository Replication

There are several scenarios in which it is quite handy to have a Subversion repository whose version history is exactly the same as
some other repository's. Perhaps the most obvious one is the maintenance of a simple backup repository, used when the primary
repository has become inaccessible due to a hardware failure, network outage, or other such annoyance. Other scenarios include
deploying mirror repositoriesto distribute heavy Subversion load across multiple servers, use as a soft-upgrade mechanism, and so on.

Subversion provides a program for managing scenarios such as these—svnsync. This works by essentially asking the Subversion
server to “replay” revisions, one at atime. It then usesthat revision information to mimic acommit of the same to another repository.
Neither repository needs to be locally accessible to the machine on which svnsync is running—its parameters are repository URLS,
and it does all itswork through Subversion's Repository Access (RA) interfaces. All it requiresisread access to the source repository
and read/write access to the destination repository.

When using svnsync against a remote source repository, the Subversion server for that repository must be running
Q/ Subversion version 1.4 or later.

Assuming you aready have a source repository that you'd like to mirror, the next thing you need is an empty target repository that
will actually serve asthat mirror. Thistarget repository can use either of the available filesystem data-store backends (see the section
called “Choosing a Data Store”), but it must not yet have any version history in it. The protocol that svnsync uses to communicate
revision information is highly sensitive to mismatches between the versioned histories contained in the source and target repositories.
For this reason, while svnsync cannot demand that the target repository be read-only,ll alowing the revision history in the target
repository to change by any mechanism other than the mirroring processis arecipe for disaster.

it mirrors. The only commits and revision property modifications that ever occur on that mirror repository should be

Do not modify a mirror repository in such away as to cause its version history to deviate from that of the repository
° those performed by the svnsync tool.

Another requirement of the target repository isthat the svnsync process be alowed to modify revision properties. Because svnsync
workswithin the framework of that repository's hook system, the default state of the repository (which isto disallow revision property
changes; see pre-revprop-change) is insufficient. You'll need to explicitly implement the pre-revprop-change hook, and your script
must allow svnsync to set and change revision properties. With those provisionsin place, you are ready to start mirroring repository
revisions.

It'sagood idea to implement authorization measures that allow your repository replication process to perform its tasks
@ while preventing other users from modifying the contents of your mirror repository at all.

Let's walk through the use of svnsync in a somewhat typical mirroring scenario. We'll pepper this discourse with practical
recommendations, which you are free to disregard if they aren't required by or suitable for your environment.

We will be mirroring the public Subversion repository which houses the source code for this very book and exposing that mirror
publicly onthe Internet, hosted on a different machine than the one on which the original Subversion source coderepository lives. This
remote host hasaglobal configuration that permits anonymous usersto read the contents of repositories on the host, but requires users
to authenticate to modify those repositories. (Please forgive usfor glossing over the details of Subversion server configuration for the
moment—those are covered thoroughly in Chapter 6, Server Configuration.) And for no other reason than that it makes for a more
interesting example, we'll be driving the replication process from athird machine—the one that we currently find ourselves using.

First, we'll create the repository which will be our mirror. This and the next couple of steps do require shell accessto the machine on
which the mirror repository will live. Once the repository is all configured, though, we shouldn't need to touch it directly again.

$ ssh adm n@vn. exanpl e. com "svnadnin create /var/svn/svn-mrror"

N fact, it can't truly be read-only, or svnsync itself would have a tough time copying revision history into it.

153

Repository Administration

adm n@vn. exanpl e. coml s password: ****x**x*
$

At this point, we have our repository, and dueto our server's configuration, that repository isnow “live” onthe Internet. Now, because
we don't want anything modifying the repository except our replication process, we need away to distinguish that process from other
would-be committers. To do so, we use a dedicated username for our process. Only commits and revision property modifications
performed by the specia username syncuser will be allowed.

Well usetherepository's hook system both to alow the replication processto do what it needsto do and to enforcethat only it isdoing
those things. We accomplish this by implementing two of the repository event hooks—pre-revprop-change and start-commit. Our
pre-revpr op- change hook script isfound in Example 5.2, “Mirror repository's pre-revprop-change hook script”, and basically
verifies that the user attempting the property changesisour syncuser user. If so, the changeis allowed; otherwise, it is denied.

Example5.2. Mirror repository's pre-revprop-change hook script

#!/bin/sh
USER=" $3"
if ["SUSER' = "syncuser"]; then exit 0; fi

echo "Only the syncuser user nmay change revision properties" >&2
exit 1

That covers revision property changes. Now we need to ensure that only the syncuser user is permitted to commit new revisions
to therepository. Wedo thisusingast art - conmm t hook script such asthe onein Example 5.3, “Mirror repository's start-commit
hook script”.

Example5.3. Mirror repository's start-commit hook script

#!/bin/sh
USER=" $2"
if ["$USER' = "syncuser"]; then exit 0; fi

echo "Only the syncuser user may comrit new revisions" >&2
exit 1

After installing our hook scripts and ensuring that they are executable by the Subversion server, we're finished with the setup of the
mirror repository. Now, we get to actually do the mirroring.

The first thing we need to do with svnsync is to register in our target repository the fact that it will be a mirror of the source
repository. We do this using the svnsync initialize subcommand. The URLs we provide point to the root directories of the target and
source repositories, respectively. In Subversion 1.4, thisis required—only full mirroring of repositoriesis permitted. Beginning with
Subversion 1.5, though, you can use svnsync to mirror only some subtree of the repository, too.

$ svnsync help init
initialize (init): usage: svnsync initialize DEST_URL SOURCE_URL

Initialize a destination repository for synchronization from
anot her repository.

154

Repository Administration

$ svnsync initialize http://svn.exanple.com svn-mrror \
https://svn. code. sf. net/ p/ svnbook/ source \
--sync-usernane syncuser --sync-password syncpass
Copi ed properties for revision 0 (svn:sync-* properties skipped).
NOTE: Normalized svn:* properties to LF Iine endings (1 rev-props, 0 node-props).
$

Our target repository will now remember that it isamirror of the public Subversion source code repository. Notice that we provided
ausername and password as arguments to svnsync—that was required by the pre-revprop-change hook on our mirror repository.

for authentication against both the source and destination repositories. This caused problems when a user's credentials
weren't exactly the same for both repositories, especially when running in noninteractive mode (with the - - non-

i nt eracti ve option). Thiswas fixed in Subversion 1.5 with the introduction of two new pairs of options. Use - -

sour ce- user nane and - - sour ce- passwor d to provide authentication credentials for the source repository;
use- - sync- user nane and- - sync- passwor d to provide credentials for the destination repository. (Theold - -

user nane and - - passwor d options still exist for compatibility, but we advise against using them.)

: In Subversion 1.4, the values given to svnsync's - - user name and - - passwor d command-line options were used

And now comes the fun part. With a single subcommand, we can tell svnsync to copy all the as-yet-unmirrored revisions from the
source repository to the target.12 The svnsync synchronize subcommand will peek into the special revision properties previously
stored on the target repository, and determine both what repository it is mirroring as well as that the most recently mirrored revision
wasrevision 0. Then it will query the source repository and determine what the latest revision in that repository is. Finaly, it asksthe
source repository's server to start replaying all the revisions between 0 and that latest revision. As svnsync gets the resultant response
from the source repository's server, it begins forwarding those revisions to the target repository's server as new commits.

$ svnsync hel p synchroni ze
synchroni ze (sync): usage: svnsync synchroni ze DEST_URL

Transfer all pending revisions to the destination fromthe source
with which it was initialized.

$ svnsync synchronize http://svn. exanpl e. com svn-mrror
Conmitted revision 1.

Copi ed properties for revision 1.

Conmitted revision 2.

Copi ed properties for revision 2.

Transmitting file data .

Conmitted revision 3.

Copi ed properties for revision 3.

Transmitting file data .

Conmitted revision 4063.

Copi ed properties for revision 4063.
Transmitting file data .

Conmitted revision 4064.

Copi ed properties for revision 4064.
Transmitting file data
Conmitted revision 4065.

Copi ed properties for revision 4065.
$

2Be forewarned that while it will take only afew seconds for the average reader to parse this paragraph and the sample output that followsit, the actual time required
to complete such amirroring operation is, shall we say, quite a bit longer.

155

Repository Administration

Of particular interest here is that for each mirrored revision, there isfirst acommit of that revision to the target repository, and then
property changes follow. This two-phase replication is required because the initial commit is performed by (and attributed to) the
user syncuser and is datestamped with the time as of that revision's creation. svnsync has to follow up with an immediate series
of property modifications that copy into the target repository all the original revision properties found for that revision in the source
repository, which also has the effect of fixing the author and datestamp of the revision to match that of the source repository.

Also noteworthy is that svnsync performs careful bookkeeping that allows it to be safely interrupted and restarted without ruining
the integrity of the mirrored data. If a network glitch occurs while mirroring a repository, simply repeat the svnsync synchronize
command, and it will happily pick up right where it left off. In fact, as new revisions appear in the source repository, thisis exactly
what you do to keep your mirror up to date.

156

Repository Administration

svnsync Bookkeeping

svnsync needs to be able to set and modify revision properties on the mirror repository because those properties are part of the
data it is tasked with mirroring. As those properties change in the source repository, those changes need to be reflected in the
mirror repository, too. But svnsync also uses a set of custom revision properties—stored in revision O of the mirror repository
—for its own internal bookkeeping. These properties contain information such as the URL and UUID of the source repository,
plus some additional state-tracking information.

One of those pieces of state-tracking information is aflag that essentially just means “there's a synchronization in progress right
now.” Thisis used to prevent multiple svnsync processes from colliding with each other while trying to mirror data to the same
destination repository. Now, generally you won't need to pay any attention whatsoever to any of these special properties (all
of which begin with the prefix svn: sync-). Occasionally, though, if a synchronization fails unexpectedly, Subversion never
has a chance to remove this particular state flag. This causes all future synchronization attempts to fail because it appears that a
synchronization is still in progress when, in fact, none is. Fortunately, recovering from this situation is as ssmple as removing the
svn: sync- | ock property which serves asthis flag from revision 0 of the mirror repository:

$ svn propdel --revprop -r0O svn:sync-lock http://svn. exanpl e.conf svn-mrror
property 'svn:sync-lock' deleted fromrepository revision O
$

That svnsync stores the source repository URL in a bookkeeping property on the mirror repository is the reason why you have to
specify that URL only once, during svnsync init. Future synchronization operations against that mirror simply consult the special
svn: sync-fromurl property stored on the mirror itself to know where to synchronize from. This value is used literally by
the synchronization process, though. Be wary of using non-fully-qualified domain names (such as referring to svnbook. r ed-

bean. comassimply svnbook becausethat happensto work when you are connected directly tother ed- bean. comnetwork),
domain names which don't resolve or resolve differently depending on where you happen to be operating from, or |P addresses
(which can change over time). But here again, if you need an existing mirror to start referring to a different URL for the same
source repository, you can change the bookkeeping property which houses that information:

$ svn propset --revprop -r0 svn:sync-fromurl NEW SOURCE- URL \
http://svn. exanpl e. conf svn-mrror

property 'svn:sync-fromurl' set on repository revision 0

$

Another interesting thing about these special bookkeeping properties is that svnsync will not attempt to mirror any of those
properties when they are found in the source repository. The reason is probably obvious, but basically boils down to svnsync not
being able to distinguish the special propertiesit has merely copied from the source repository from those it needs to consult and
maintain for its own bookkeeping needs. This situation could occur if, for example, you were maintaining amirror of amirror of
athird repository. When svnsync sees its own special propertiesin revision 0 of the source repository, it simply ignores them.

An svnsync info subcommand was added in Subversion 1.6 to easily display the specia bookkeeping propertiesin the destination
repository.

$ svnsync help info
i nfo: usage: svnsync info DEST URL

Print information about the synchronization destination repository
| ocated at DEST_URL.

$ svnsync info http://svn.exanpl e.com svn-mnirror

Source URL: https://svn. code. sf. net/p/svnbook/ source

Source Repository UUID: 931749d0- 5854- 0410- 9456- f 14be4d6b398
Last Merged Revi sion: 4065

$

157

Repository Administration

Thereis, however, onebit of inelegancein the process. Because Subversion revision properties can be changed at any time throughout
the lifetime of the repository, and because they don't leave an audit trail that indicates when they were changed, replication processes
have to pay specia attention to them. If you've already mirrored the first 15 revisions of a repository and someone then changes a
revision property on revision 12, svnsync won't know to go back and patch up its copy of revision 12. You'll need to tell it to do so
manually by using (or with some additional tooling around) the svnsync copy-r evpr ops subcommand, which smply rereplicates all
the revision properties for a particular revision or range thereof.

$ svnsync hel p copy-revprops
copy-revprops: usage: svnsync copy-revprops DEST _URL [REV[: REV2]]

Copy the revision properties in a given range of revisions to the
destination fromthe source with which it was initialized.

$ svnsync copy-revprops http://svn.exanpl e.com svn-mrror 12
Copi ed properties for revision 12.
$

That'srepository replicationin anutshell. Y ou'll likely want some automation around such aprocess. For example, while our example
was a pull-and-push setup, you might wish to have your primary repository push changes to one or more blessed mirrors as part
of its post-commit and post-revprop-change hook implementations. This would enable the mirror to be up to date in as near to real
timeasislikely possible.

Also, whileitisn't very commonplaceto do so, svnsync does gracefully mirror repositoriesin which the user aswhom it authenticates
has only partial read access. It simply copies only the hits of the repository that it is permitted to see. Obviously, such a mirror is
not useful as a backup solution.

In Subversion 1.5, svnsync grew the ability to also mirror asubset of arepository rather than the wholething. The process of setting up
and maintaining such amirror is exactly the same as when mirroring awhole repository, except that instead of specifying the source
repository'sroot URL when running svnsync init, you specify the URL of some subdirectory within that repository. Synchronization
to that mirror will now copy only the bits that changed under that source repository subdirectory. There are some limitations to this
support, though. First, you can't mirror multiple disjoint subdirectories of the source repository into a single mirror repository—
you'd need to instead mirror some parent directory that is common to both. Second, the filtering logic is entirely path-based, so if
the subdirectory you are mirroring was renamed at some point in the past, your mirror would contain only the revisions since the
directory appeared at the URL you specified. And likewise, if the source subdirectory is renamed in the future, your synchronization
processes will stop mirroring data at the point that the source URL you specified is no longer valid.

Asfar as user interaction with repositories and mirrors goes, it is possible to have a single working copy that interacts with both, but
you'll have to jump through some hoops to make it happen. First, you need to ensure that both the primary and mirror repositories
have the same repository UUID (which is not the case by default). See the section called “Managing Repository UUIDS” later in
this chapter for more about this.

Once the two repositories have the same UUID, you can use svn switch with the - - r el ocat e option to point your working copy
to whichever of the repositories you wish to operate against, aprocess that is described in svn switch (sw). Thereis a possible danger
here, though, in that if the primary and mirror repositoriesaren't in close synchronization, aworking copy up to date with, and pointing
to, the primary repository will, if relocated to point to an out-of-date mirror, become confused about the apparent sudden loss of
revisionsit fully expects to be present, and it will throw errorsto that effect. If this occurs, you can relocate your working copy back
to the primary repository and then either wait until the mirror repository is up to date, or backdate your working copy to arevision
you know is present in the sync repository, and then retry the relocation.

Finally, be aware that the revision-based replication provided by svnsync is only that—replication of revisions. Only information
carried by the Subversion repository dump file format is available for replication. As such, svnsync has the same sorts of limitations
that the repository dump stream has, and does not include such things as the hook implementations, repository or server configuration
data, uncommitted transactions, or information about user locks on repository paths.

158

Repository Administration

Repository Backup

Despite numerous advances in technology since the birth of the modern computer, one thing unfortunately rings true with crystalline
clarity—sometimes things go very, very awry. Power outages, network connectivity dropouts, corrupt RAM, and crashed hard drives
are but a taste of the evil that Fate is poised to unleash on even the most conscientious administrator. And so we arrive at a very
important topic—how to make backup copies of your repository data.

There are two types of backup methods available for Subversion repository administrators—full and incremental. A full backup of
the repository involves squirreling away in one sweeping action al the information required to fully reconstruct that repository in
the event of a catastrophe. Usually, it means, quite literally, the duplication of the entire repository directory (which includes either
aBerkeley DB or FSFS environment). Incremental backups are lesser things: backups of only the portion of the repository data that
has changed since the previous backup.

As far as full backups go, the naive approach might seem like a sane one, but unless you temporarily disable all other access to
your repository, simply doing a recursive directory copy runs the risk of generating a faulty backup. In the case of Berkeley DB,
the documentation describes a certain order in which database files can be copied that will guarantee a valid backup copy. A similar
ordering existsfor FSFS data. But you don't have to implement these algorithms yourself, because the Subversion development team
has already done so. The svnadmin hotcopy command takes care of the minutiainvolved in making a hot backup of your repository.
Anditsinvocation isastrivial asthe Unix cp or Windows copy operations:

$ svnadm n hotcopy /var/svn/repos /var/svn/repos-backup

The resultant backup is a fully functional Subversion repository, able to be dropped in as a replacement for your live repository
should something go horribly wrong.

When making copies of a Berkeley DB repository, you can even instruct svnadmin hotcopy to purge any unused Berkeley DB
logfiles (see the section called “Purging unused Berkeley DB logfiles’) from the original repository upon completion of the copy.
Simply providethe - - cl ean- | ogs option on the command line.

$ svnadm n hotcopy --clean-1o0gs /var/svn/bdb-repos /var/svn/bdb-repos-backup

Additional tooling around this command is available, too. The t ool s/ backup/ directory of the Subversion source distribution
holdsthe hot-backup.py script. This script adds a bit of backup management atop svnadmin hotcopy, alowing you to keep only the
most recent configured number of backups of each repository. It will automatically manage the names of the backed-up repository
directoriesto avoid collisions with previous backups and will “rotate off” older backups, deleting them so that only the most recent
ones remain. Even if you also have an incremental backup, you might want to run this program on aregular basis. For example, you
might consider using hot-backup.py from a program scheduler (such as cron on Unix systems), which can cause it to run nightly
(or at whatever granularity of time you deem safe).

Some administrators use a different backup mechanism built around generating and storing repository dump data. We described
in the section called “Migrating Repository Data Elsewhere” how to use svnadmin dump with the - - i ncr enent al option to
perform an incremental backup of a given revision or range of revisions. And of course, you can achieve a full backup variation
of this by omitting the - - i ncr ement al option to that command. There is some value in these methods, in that the format of
your backed-up information is flexible—it's not tied to a particular platform, versioned filesystem type, or release of Subversion or
Berkeley DB. But that flexibility comes at acost, namely that restoring that data can take along time—Ionger with each new revision
committed to your repository. Also, asis the case with so many of the various backup methods, revision property changes that are
made to aready backed-up revisions won't get picked up by a nonoverlapping, incremental dump generation. For these reasons, we
recommend against relying solely on dump-based backup approaches.

As you can see, each of the various backup types and methods has its advantages and disadvantages. The easiest is by far the full
hot backup, which will always result in a perfect working replica of your repository. Should something bad happen to your live
repository, you can restore from the backup with a simple recursive directory copy. Unfortunately, if you are maintaining multiple
backups of your repository, these full copies will each eat up just as much disk space as your live repository. Incremental backups,

159

Repository Administration

by contrast, tend to be quicker to generate and smaller to store. But the restoration process can be a pain, often involving applying
multiple incremental backups. And other methods have their own peculiarities. Administrators need to find the balance between the
cost of making the backup and the cost of restoring it.

The svnsync program (see the section called “Repository Replication™) actually provides a rather handy middle-ground approach.
If you are regularly synchronizing a read-only mirror with your main repository, in a pinch your read-only mirror is probably a
good candidate for replacing that main repository if it falls over. The primary disadvantage of this method isthat only the versioned
repository data gets synchronized—repository configuration files, user-specified repository path locks, and other items that might
livein the physical repository directory but not inside the repository's virtual versioned filesystem are not handled by svnsync.

In any backup scenario, repository administrators need to be aware of how modifications to unversioned revision properties affect
their backups. Since these changes do not themselves generate new revisions, they will not trigger post-commit hooks, and may not
even trigger the pre-revprop-change and post-revprop-change hooks. 13 And since you can change revision properties without respect
to chronological order—you can change any revision's properties at any time—an incremental backup of the latest few revisions
might not catch a property modification to arevision that was included as part of a previous backup.

Generally speaking, only thetruly paranoid would need to back up their entirerepository, say, every timeacommit occurred. However,
assuming that a given repository has some other redundancy mechanism in place with relatively fine granularity (such as per-commit
emails or incremental dumps), ahot backup of the database might be something that arepository administrator would want to include
as part of a system-wide nightly backup. It's your data—protect it as much as you'd like.

Often, the best approach to repository backupsis a diversified one that leverages combinations of the methods described here. The
Subversion developers, for example, back up the Subversion source code repository nightly using hot-backup.py and an off-site
rsync of those full backups; keep multiple archives of all the commit and property change notification emails; and have repository
mirrors maintained by various volunteers using svhsync. Your solution might be similar, but should be catered to your needs and
that delicate balance of convenience with paranoia. And whatever you do, validate your backups from time to time—what good is
asparetire that has ahole in it? While al of this might not save your hardware from the iron fist of Fate, X it should certai nly help
you recover from those trying times.

Managing Repository UUIDs

Subversion repositories have auniversally uniqueidentifier (UUID) associated with them. Thisisused by Subversion clientsto verify
the identity of a repository when other forms of verification aren't good enough (such as checking the repository URL, which can
change over time). Most Subversion repository administratorsrarely, if ever, need to think about repository UUIDs as anything more
than atrivial implementation detail of Subversion. Sometimes, however, thereis cause for attention to this detail.

Asagenera rule, you want the UUIDs of your live repositoriesto be unique. That is, after all, the point of having UUIDs. But there
are times when you want the repository UUIDs of two repositories to be exactly the same. For example, if you make a copy of a
repository for backup purposes, you want the backup to be a perfect replica of the original so that, in the event that you have to
restore that backup and replace the live repository, users don't suddenly see what looks like a different repository. When dumping
and loading repository history (as described earlier in the section called “Migrating Repository Data Elsewhere”), you get to decide
whether to apply the UUID encapsulated in the data dump stream to the repository in which you are loading the data. The particular
circumstance will dictate the correct behavior.

Thereare acouple of waysto set (or reset) arepository's UUID, should you need to. As of Subversion 1.5, thisisassimple asusing the
svhadmin setuuid command. If you provide this subcommand with an explicit UUID, it will vaidate that the UUID is well-formed
and then set the repository UUID to that value. If you omit the UUID, a brand-new UUID will be generated for your repository.

$ svnl ook uuid /var/svn/repos
cf 2b9d22- acb5- 11dc- bc8c- 05e83cebdbec
$ svnadm n setuuid /var/svn/repos # generate a new UU D

Bsynadmin setlog can be called in away that bypasses the hook interface altogether.
14y ou know—the collective term for all of her “fickle fingers.”

160

Repository Administration

$ svnl ook uuid /var/svn/repos
3c3c38f e-acc0-11dc-acbc-1b37ff 1c8e7c
$ svnadm n setuuid /var/svn/repos \
cf 2b9d22- acb5- 11dc- bc8c- 05e83ce5dbec # restore the old UU D
$ svnl ook uuid /var/svn/repos
cf 2b9d22- acb5- 11dc- bc8c- 05e83ce5dbec
$

For folks using versions of Subversion earlier than 1.5, these tasks are a little more complicated. Y ou can explicitly set arepository's
UUID by piping arepository dump file stub that carries the new UUID specification through svnadni n | oad --force-uuid
REPQCS- PATH.

$ svnadmn load --force-uuid /var/svn/repos <<EOF
SVN-f s- dunp- f or mat - ver si on: 2

UUI D: cf 2b9d22- acb5- 11dc- bc8c- 05e83cebdbec
EOF

$ svnl ook uuid /var/svn/repos

cf 2b9d22- acb5- 11dc- bc8c- 05e83cebdbec

$

Having older versions of Subversion generate a brand-new UUID is not quite as simple to do, though. Y our best bet here isto find
some other way to generate a UUID, and then explicitly set the repository's UUID to that value.

Moving and Removing Repositories

Subversion repository data is wholly contained within the repository directory. As such, you can move a Subversion repository to
some other location on disk, rename arepository, copy arepository, or delete arepository altogether using the tools provided by your
operating system for manipulating directories—mv, cp -a, and rm -r on Unix platforms; copy, move, and rmdir /s/q on Windows,
vast numbers of mouse and menu gyrations in various graphical file explorer applications, and so on.

Of course, there's often still more to be done when trying to cleanly affect changes such as this. For example, you might need to
update your Subversion server configuration to point to the new location of arelocated repository or to remove configuration bitsfor
anow-deleted repository. If you have automated processes that publish information from or about your repositories, they may need
to be updated. Hook scripts might need to be reconfigured. Users may need to be notified. The list can go on indefinitely, or at least
to the extent that you've built processes and procedures around your Subversion repository.

In the case of acopied repository, you should also consider the fact that Subversion uses repository UUIDsto distinguish repositories.
If you copy a Subversion repository using a typical shell recursive copy command, you'll wind up with two repositories that are
identical in every way—including their UUIDs. In some circumstances, this might be desirable. But in the instances where it is not,
you'll need to generate a new UUID for one of these identical repositories. See the section called “Managing Repository UUIDS”
for more about managing repository UUIDs.

Summary

By now you should have a basic understanding of how to create, configure, and maintain Subversion repositories. We introduced
you to the various tools that will assist you with this task. Throughout the chapter, we noted common administration pitfalls and
offered suggestions for avoiding them.

All that remains is for you to decide what exciting data to store in your repository, and finally, how to make it available over a
network. The next chapter isall about networking.

161

Chapter 6. Server Configuration

A Subversion repository can be accessed simultaneously by clients running on the same machine on which the repository resides
using URLs carryingthef i | e: // scheme. But the typical Subversion setup involves a single server machine being accessed from
clients on computers all over the office—or, perhaps, all over the world.

This chapter describes how to get your Subversion repository exposed outside its host machine for use by remote clients. We will
cover Subversion's currently available server mechanisms, discussing the configuration and use of each. After reading this chapter,
you should be able to decide which networking setup is right for your needs, as well as understand how to enable such a setup on
your host computer.

Overview

Subversion was designed with an abstract repository access layer. This means that a repository can be programmatically accessed by
any sort of server process, and the client “repository access’ API allows programmers to write plug-ins that speak relevant network
protocols. In theory, Subversion can use an infinite number of network implementations. In practice, there are only two Subversion
servers in widespread use today.

Apacheis an extremely popular web server; using the mod_dav_svn module, Apache can access arepository and make it available
to clients via the WebDAV/DeltaV protocol, which is an extension of HTTP. Because Apache is an extremely extensible server, it
provides a number of features “for free,” such as encrypted SSL communication, logging, integration with a number of third-party
authentication systems, and limited built-in web browsing of repositories.

In the other corner is svnserve: asmall, lightweight server program that speaks a custom protocol with clients. Becauseits protocol is
explicitly designed for Subversion and isstateful (unlikeHTTP), it provides significantly faster network operations—but at the cost of
some features aswell. Whileit can use SASL to provide avariety of authentication and encryption options, it has no logging or built-
inweb browsing. Itis, however, extremely easy to set up and is often the best option for small teamsjust starting out with Subversion.

The network protocol which svnserve speaks may also be tunneled over an SSH connection. This deployment option for svnserve
differs quite a bit in features from a traditional svnserve deployment. SSH is used to encrypt all communication. SSH is also used
exclusively to authenticate, so real system accounts are required on the server host (unlike vanillasvnser ve, which hasitsown private
user accounts). Finally, because this setup requires that each user spawn a private, temporary svnserve process, it's equivalent (from
a permissions point of view) to allowing a group of local usersto al access the repository viafi | e: // URLs. Path-based access
control has no meaning, since each user is accessing the repository database files directly.

Table 6.1, “Comparison of subversion server options’ provides a quick summary of the three typical server deployments.

Table 6.1. Comparison of subversion server options

Feature Apache + mod_dav_svn svnserve svnserve over SSH

Authentication options HTTP Basic or Digest auth,|CRAM-MD5 by default;|SSH
X.509 certificates, LDAP,|LDAP, NTLM, or any other
NTLM, or any other mechanism|mechanism available to SASL

available to Apache httpd

User account options Private “users’ file, or|Private “users’ file, or other|System accounts
other mechanisms available to| mechanisms available to SASL
Apache httpd (LDAP, SQL,|(LDAP, SQL, etc.)

etc.)

Authorization options Read/write access can be|Read/write access can be|Read/write access only
granted over the whole/granted over the whole|grantable over the whole
repository, or specified per path | repository, or specified per path | repository

162

Server Configuration

Feature Apache + mod_dav_svn svnserve svnserve over SSH

Encryption Available via optional SSL|Available via optional SASL |Inherent in SSH connection
(https) features

Logging High-level operational logging|High-level operational logging|High-level operationa logging
of Subversion operations plus|only only

detailed logging at the per-
HTTP-request level

Interoperability Accessible by other WebDAV | Talks only to svn clients Taksonly to svn clients
clients

Web viewing Limited built-in support, or|Only via third-party tools such|Only via third-party tools such
via third-party tools such as|asViewVC asViewVC
ViewVC

Master-dlave server replication | Transparent write-proxying | Can only create read-only slave|Can only create read-only slave
available from slave to master | servers Servers

Speed Somewhat slower Somewhat faster Somewhat faster

Initial setup Somewhat complex Extremely simple Moderately simple

Choosing a Server Configuration

So, which server should you use? Which is best?

Obviously, there's no right answer to that question. Every team has different needs, and the different servers all represent different
sets of trade-offs. The Subversion project itself doesn't endorse one server or another, or consider either server more “officia” than
another.

Here are some reasons why you might choose one deployment over another, as well as reasons you might not choose one.

The svnserve Server

Why you might want to use it:
* Quick and easy to set up.
» Network protocol is stateful and noticeably faster than WebDAV .
* No need to create system accounts on server.
 Password is not passed over the network.
Why you might want to avoid it:

» By default, only one authentication method is available, the network protocol is not encrypted, and the server stores clear text
passwords. (All these things can be changed by configuring SASL, but it's a bit more work to do.)

» No advanced logging facilities.

» No built-in web browsing. (Y ou'd have to install a separate web server and repository browsing software to add this.)

svnserve over SSH

Why you might want to useit:

e The network protocol is stateful and noticeably faster than WebDAV.

163

Server Configuration

 You can take advantage of existing SSH accounts and user infrastructure.
 All network traffic is encrypted.
Why you might want to avoid it:
* Only one choice of authentication method is available.
» No advanced logging facilities.
* It requires usersto be in the same system group, or use a shared SSH key.

* If used improperly, it can lead to file permission problems.

The Apache HTTP Server

Why you might want to use it:

« It allows Subversion to use any of the numerous authentication systems already integrated with Apache.

» Thereisno need to create system accounts on the server.

» Full Apachelogging is available.

» Network traffic can be encrypted via SSL.

» HTTP(S) can usually go through corporate firewalls.

* Built-in repository browsing is available via web browser.

» Therepository can be mounted as a network drive for transparent version control (see the section called “ Autoversioning”).
Why you might want to avoid it:

» Noticeably slower than svnserve, because HTTP is a statel ess protocol and requires more network turnarounds.

* Initial setup can be complex.

Recommendations

In general, the authors of this book recommend a vanilla svnserve installation for small teams just trying to get started with a
Subversion server; it's the simplest to set up and has the fewest maintenance issues. Y ou can always switch to amore complex server
deployment as your needs change.

Here are some general recommendations and tips, based on years of supporting users:

« If you're trying to set up the simplest possible server for your group, a vanilla svnserve installation is the easiest, fastest route.
Note, however, that your repository data will be transmitted in the clear over the network. If your deployment is entirely within
your company's LAN or VPN, thisisn't an issue. If the repository is exposed to the wide-open Internet, you might want to make
sure that either the repository's contents aren't sensitive (e.g., it contains only open source code), or that you go the extramilein
configuring SASL to encrypt network communications.

« If you need to integrate with existing legacy identity systems (LDAP, Active Directory, NTLM, X.509, etc.), you must use either
the Apache-based server or svnserve configured with SASL.

« If you've decided to use either Apache or stock svnserve, create a single svn user on your system and run the server process as
that user. Be sure to make the repository directory wholly owned by the svn user as well. From a security point of view, this keeps

164

Server Configuration

the repository data nicely siloed and protected by operating system filesystem permissions, changeable by only the Subversion
server process itself.

If you have an existing infrastructurethat is heavily based on SSH accounts, and if your usersalready have system accounts on your
server machine, it makes sense to deploy an svnserve-over-SSH solution. Otherwise, we don't widely recommend this option to
the public. It's generally considered safer to have your users access the repository via (imaginary) accounts managed by svnserve
or Apache, rather than by full-blown system accounts. If your deep desire for encrypted communication still draws you to this
option, we recommend using Apache with SSL or svnserve with SASL encryption instead.

Do not be seduced by the simple idea of having all of your users access a repository directly viafil e: // URLs. Evenif the
repository is readily available to everyone via a network share, thisis a bad idea. It removes any layers of protection between
the users and the repository: users can accidentally (or intentionally) corrupt the repository database, it becomes hard to take the
repository offlinefor inspection or upgrade, and it can lead to amess of file permission problems (see the section called “ Supporting
Multiple Repository Access Methods’). Note that this is also one of the reasons we warn against accessing repositories viasvn
+ssh:// URLs—from a security standpoint, it's effectively the same as local users accessing viafil e: //, and it can entail
all the same problemsiif the administrator isn't careful.

svnserve, a Custom Server

The svnserve program is a lightweight server, capable of speaking to clients over TCP/IP using a custom, stateful protocol. Clients
contact an svnserve server by using URLSs that begin with the svn: // or svn+ssh: // scheme. This section will explain the
different ways of running svnser ve, how clients authenti cate themsel vesto the server, and how to configure appropriate access control
to your repositories.

Invoking the Server

There are afew different ways to run the svnser ve program:

Run svnser ve as a standal one daemon, listening for requests.

Have the Unix inetd daemon temporarily spawn svnserve whenever arequest comes in on acertain port.
Have SSH invoke atemporary svnserve over an encrypted tunnel.

Run svnserve as a Microsoft Windows service.

Run svnserve as alaunchd job.

The following sections will cover in detail these various deployment options for svnserve.

svnserve as daemon

The easiest option isto run svnserve as a standalone “ daemon” process. Usethe - d option for this:

$ svnserve -d

$

svnserve is now running, listening on port 3690

When running svnservein daemon mode, you canusethe- - 1 i st en- port and- -1 i st en- host optionsto customize the exact
port and hostname to “bind” to.

Once we successfully start svnserve as explained previously, it makes every repository on your system available to the network. A
client needs to specify an absolute path in the repository URL. For example, if arepository islocated at / var / svn/ proj ect1,a
client wouldreachitviasvn: // host . exanpl e. coni var/ svn/ pr oj ect 1. Toincrease security, you can passthe- r option
to svnserve, which restricts it to exporting only repositories below that path. For example:

165

Server Configuration

$ svnserve -d -r /var/svn

Using the - r option effectively modifies the location that the program treats as the root of the remote filesystem space. Clients then
use URLsthat have that path portion removed from them, leaving much shorter (and much less revealing) URLSs:

$ svn checkout svn://host.exanpl e.com projectl

svnserve viainetd

If youwant inetd to launch the process, you need to passthe- i (- - i net d) option. Inthefollowing example, we've shown the output
from running svnserve -i at the command line, but note that this isn't how you actually start the daemon; see the paragraphs
following the example for how to configure inetd to start svnserve.

$ svnserve -i
(success (22 () (edit-pipeline svndiffl absent-entries conmit-revprops d\
epth | og-revprops partial-replay)))

When invoked with the - - i net d option, svnserve attempts to speak with a Subversion client viast di n and st dout using a
custom protocol. Thisisthe standard behavior for aprogram being run viainetd. The lANA hasreserved port 3690 for the Subversion
protocol, so on a Unix-like system you can add linesto/ et ¢/ ser vi ces such asthese (if they don't already exist):

svn 3690/tcp # Subversion
svn 3690/ udp # Subversion

If your system is using a classic Unix-like inetd daemon, you can add thislineto/ et ¢/ i net d. conf:

svn streamtcp nowait svnowner /usr/bin/svnserve svnserve -i

Make sure “svnowner” is a user that has appropriate permissions to access your repositories. Now, when a client connection comes
into your server on port 3690, inetd will spawn an svnserve process to service it. Of course, you may also want to add - r to the
configuration line as well, to restrict which repositories are exported.

svnserve over a tunnel

Another way to invoke svnserve is in tunnel mode, using the -t option. This mode assumes that a remote-service program such
as rsh or ssh has successfully authenticated a user and is now invoking a private svnserve process as that user. (Note that you,
the user, will rarely, if ever, have reason to invoke svnserve with the - t at the command line; instead, the SSH daemon does so
for you.) The svnserve program behaves normally (communicating viast di n and st dout) and assumes that the traffic is being
automatically redirected over some sort of tunnel back to the client. When svnserveisinvoked by atunnel agent like this, be sure that
the authenticated user has full read and write accessto the repository database files. It's essentially the same asalocal user accessing
therepository viafil e: // URLs.

This option is described in much more detail later in this chapter in the section called “ Tunneling over SSH”.
svnserve as a Windows service

If your Windows system is a descendant of Windows NT (Windows 2000 or newer), you can run svnserve as a standard Windows
service. Thisistypically a much nicer experience than running it as a standalone daemon with the - - daenon (- d) option. Using

166

Server Configuration

daemon mode requireslaunching aconsol e, typing acommand, and then leaving the consol e window running indefinitely. A Windows
service, however, runsin the background, can start at boot time automatically, and can be started and stopped using the same consi stent
administration interface as other Windows services.

Y ou'll need to define the new service using the command-linetool SC.EXE. Much liketheinetd configuration line, you must specify
an exact invocation of svnserve for Windows to run at startup time:

C.\> sc create svn
bi npat h= "C:\svn\ bi n\svnserve. exe --service -r C\repos"
di spl aynane= " Subversi on Server"
depend= Tcpip
start= auto

This defines a new Windows service named svn which executes a particular svnserve.exe command when started (in this case,
rooted at C: \ r epos). There are anumber of caveats in the prior example, however.

First, noticethat the svnser ve.exe program must always beinvoked with the- - ser vi ce option. Any other optionsto svnser ve must
then be specified on the same line, but you cannot add conflicting optionssuch as- - daenon (- d),- -t unnel ,or--i netd (-i).
Optionssuchas-r or--1isten-port arefine though. Second, be careful about spaces when invoking the SC.EXE command:
thekey= val ue patterns must have no spaces between k ey = and must have exactly one space beforetheval ue. Lastly, be careful
about spacesin your command line to beinvoked. If a directory name contains spaces (or other characters that need escaping), place
the entire inner value of bi npat h in double quotes, by escaping them:

C:\> sc create svn
bi npat h= "\"C:\ program fil es\ svn\ bi n\svnserve. exe\" --service -r C \repos"”
di spl aynane= " Subversi on Server"
depend= Tcpip
start= auto

Also note that the word bi npat h is misleading—its value is a command line, not the path to an executable. That's why you need
to surround it with quotesif it contains embedded spaces.

Oncethe serviceisdefined, it can be stopped, started, or queried using standard GUI tools (the Services administrative control panel),
or at the command line:

C.\> net stop svn
C.\> net start svn

The service can aso be uninstalled (i.e., undefined) by deleting its definition: sc del et e svn. Just be sure to stop the service
first! The SC.EXE program has many other subcommands and options; runsc / ? to learn more about it.

svnserve as alaunchd job

Mac OS X (10.4 and higher) useslaunchd to manage processes (including daemons) both system-wide and per-user. A launchd job
is specified by parametersin an XML property list file, and the launchctl command is used to manage the lifecycle of those jobs.

When configured to run as alaunchd job, svnserve is automatically launched on demand whenever incoming Subversion svn: / /
network traffic needsto be handled. Thisisfar more convenient than a configuration which requiresyou to manually invoke svnserve
as along-running background process.

To configure svnserve as a launchd job, first create a job definition file named /Li brary/LaunchDaenons/
or g. apache. subver si on. svnserve. pl i st. Example 6.1, “A sample svnserve launchd job definition” provides an
example of such afile.

167

Server Configuration

Example 6.1. A sample svnserve launchd job definition

<?xm version="1.0" encodi ng="UTF-8"?>
<! DCCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN'
"http://ww. appl e. coni DTDs/ PropertyList-1.0.dtd">
<plist version="1.0">
<di ct >
<key>Label </ key>
<string>org. apache. subversi on. svnserve</string>
<key>Ser vi ceDescri pti on</ key>
<string>Host Subversion repositories using svn:// scheme</string>
<key>Pr ogr amAr gunent s</ key>
<array>
<string>/usr/bin/svnserve</string>
<string>--inetd</string>
<string>--root=/var/svn</string>
</ array>
<key>User Nanme</ key>
<string>svn</string>
<key>G oupNane</ key>
<string>svn</string>
<key>i net dConpati bi l i ty</key>

<di ct >
<key>Wai t </ key>
<fal se/ >
</dict>
<key>Socket s</ key>
<di ct >
<key>Li st ener s</ key>
<array>
<di ct >
<key>SockSer vi ceNane</ key>
<string>svn</string>
<key>Bonj our </ key>
<true/ >
</dict>
</ array>
</dict>
</dict>
</plist>

described in this section. For example, runman | aunchd from the command line to see the manual page for launchd

The launchd system can be somewhat challenging to learn. Fortunately, documentation exists for the commands
Q itself, man | aunchd. pli st to read about the job definition format, etc.

Once your job definition fileis created, you can activate the job using launchctl load:
$ sudo launchct!l Ioad \
-w / Li brary/ LaunchDaenons/ or g. apache. subver si on. svnserve. pli st

To be clear, this action doesn't actually launch svnserve yet. It simply tells launchd how to fire up svnserve when incoming
networking traffic arrives on the svn network port; it will be terminated it after the traffic has been handled.

168

Server Configuration

administrator. Note also that the User Narre and G- oupNane keys in the definition file are optional—if omitted, the

Because we want svnserve to be a system-wide daemon process, we need to use sudo to manage this job as an
Q job will run as the user who loaded the job.

Deactivating the job isjust as easy to do—use launchctl unload:

$ sudo |l aunchct!l unload \
-w / Li brary/ LaunchDaenons/ or g. apache. subver si on. svnserve. pl i st

launchctl also provides away for you to query the status of jobs. If the job is loaded, there will be line which matches the Label
specified in the job definition file:

$ sudo launchctl list | grep org.apache. subversion. svnserve
- 0 or g. apache. subver si on. svnserve
$

Built-in Authentication and Authorization

When aclient connects to an svnser ve process, the following things happen:
» Theclient selects a specific repository.

» The server processes the repository's conf / svnser ve. conf file and begins to enforce any authentication and authorization
policiesit describes.

» Depending on the defined policies, one of the following may occur:
¢ The client may be allowed to make requests anonymously, without ever receiving an authentication challenge.
¢ The client may be challenged for authentication at any time.
« If operating in tunnel mode, the client will declare itself to be already externally authenticated (typically by SSH).

The svnserve server, by default, knows only how to send a CRAM-M D5 authentication challenge. In essence, the server sends a
small amount of datato the client. The client uses the MD5 hash algorithm to create afingerprint of the data and password combined,
and then sends the fingerprint as a response. The server performs the same computation with the stored password to verify that the
result isidentical. At no point does the actual password travel over the network.

If your svnserve server was built with SASL support, it not only knows how to send CRAM-MD5 challenges, but aso likely knows
awhole host of other authentication mechanisms. See the section called “Using svnserve with SASL” later in this chapter to learn
how to configure SASL authentication and encryption.

It'salso possible, of course, for the client to be externally authenticated via atunnel agent, such as ssh. In that case, the server simply
examines the user it's running as, and uses this name as the authenticated username. For more on this, seethe later section, the section
called “Tunneling over SSH”.

Asyou've already guessed, arepository'ssvnser ve. conf fileisthe centra mechanism for controlling access to the repository.
When used in conjunction with other supplemental files described in this section, this configuration file offers an administrator a
complete solution for governing user authentication and authorization policies. Each of thefileswe'll discuss usesthe format common
to other configuration files (see the section called “Runtime Configuration Ared’): section names are marked by square brackets ([
and]), comments begin with hashes (#), and each section contains specific variables that can be set (var i abl e = val ue). Let's
walk through these files now and learn how to use them.

1See RFC 2195.

169

Server Configuration

Create a users file and realm

For now, the [gener al] section of svnserve. conf has al the variables you need. Begin by changing the values of those
variables. choose aname for afile that will contain your usernames and passwords and choose an authentication realm:

[general]
password-db = userfile
real m = exanple realm

Ther eal misaname that you define. It tells clients which sort of “authentication namespace” they're connecting to; the Subversion
client displaysit in the authentication prompt and usesit as akey (along with the server's hostname and port) for caching credentials
on disk (see the section called “Caching credentials’). The passwor d- db variable points to a separate file that contains a list of
usernames and passwords, using the same familiar format. For example:

[users]
harry = foopassword
sally = barpassword

The value of passwor d- db can be an absolute or relative path to the users file. For many admins, it's easy to keep the file right
inthe conf/ area of the repository, alongside svnser ve. conf . On the other hand, it's possible you may want to have two or
more repositories share the same usersfile; in that case, the file should probably live in amore public place. The repositories sharing
the users file should also be configured to have the same realm, since the list of users essentially defines an authentication realm.
Wherever the file lives, be sure to set the file's read and write permissions appropriately. If you know which user(s) svnserve will
run as, restrict read access to the usersfile as necessary.

Set access controls

There are two more variables to set in the svnserve. conf file: they determine what unauthenticated (anonymous) and
authenticated users are allowed to do. The variablesanon- access and aut h- access can be set to the value none, r ead, or
wr i t e. Setting the value to none prohibits both reading and writing; r ead allows read-only access to the repository, andwr i t e
allows complete read/write access to the repository. For example:

[general]
password-db = userfile
real m = exanple realm

anonynmous users can only read the repository
anon- access = read

aut henticated users can both read and wite
aut h-access = wite

The example settings are, in fact, the default values of the variables, should you forget to define them. If you want to be even more
conservative, you can block anonymous access completely:

[general]
password-db = userfile
real m = exanmple realm

anonynous users aren't all owed
anon- access = none

170

Server Configuration

authenticated users can both read and wite
aut h-access = wite

The server process understands not only these “blanket” access controls to the repository, but also finer-grained access restrictions
placed on specific files and directories within the repository. To make use of this feature, you need to define a file containing more
detailed rules, and then set the aut hz- db variable to point to it:

[general]
password-db = userfile
real m = exanple realm

Specific access rules for specific l|ocations
authz-db = authzfile

We discuss the syntax of the aut hzf i | e filein detail later in this chapter, in the section called “ Path-Based Authorization”. Note
that theaut hz- db variableisn't mutually exclusive withtheanon- access and aut h- access variables; if al thevariablesare
defined at once, all of the rules must be satisfied before access is allowed.

Using svnserve with SASL

For many teams, the built-in CRAM-MD5 authentication isall they need from svnserve. However, if your server (and your Subversion
clients) were built with the Cyrus Simple Authentication and Security Layer (SASL) library, you have a number of authentication
and encryption options available to you.

What Is SASL?

The Cyrus Simple Authentication and Security Layer is open source software written by Carnegie Mellon University. It adds
generic authentication and encryption capabilities to any network protocol, and as of Subversion 1.5 and later, both the svnserve
server and svn client know how to make use of thislibrary. It may or may not be available to you: if you're building Subversion
yourself, you'll need to have at least version 2.1 of SASL installed on your system, and you'll need to make sure that it's detected
during Subversion's build process. The Subversion command-line client will report the availability of Cyrus SASL when you run
svn --versi on; if you're using some other Subversion client, you might need to check with the package maintainer as to
whether SASL support was compiled in.

SASL comes with a number of pluggable modules that represent different authentication systems: Kerberos (GSSAPI), NTLM,
One-Time-Passwords (OTP), DIGEST-MD5, LDAP, Secure-Remote-Password (SRP), and others. Certain mechanisms may or
may not be available to you; be sure to check which modules are provided.

Y ou can download Cyrus SASL (both code and documentation) from http://asg.web.cmu.edu/sasl/sasl-library.html.

Normally, when asubversion client connectsto svnser ve, the server sendsagreeting that advertisesalist of the capabilitiesit supports,
and the client responds with asimilar list of capabilities. If the server is configured to require authentication, it then sends a challenge
that lists the authenti cation mechanisms available; the client responds by choosing one of the mechanisms, and then authentication is
carried out in some number of round-trip messages. Even when SASL capabilitiesaren't present, the client and server inherently know
how to use the CRAM-MD5 and ANONY MOUS mechanisms (see the section called “Built-in Authentication and Authorization”).
If server and client were linked against SASL, anumber of other authentication mechanisms may also be available. However, you'll
need to explicitly configure SASL on the server side to advertise them.

Authenticating with SASL

To activate specific SASL mechanisms on the server, you'll need to do two things. First, createa[sasl] sectioninyour repository's
svnserve. conf filewith aninitial key-value pair:

171

http://asg.web.cmu.edu/sasl/sasl-library.html

Server Configuration

[sasl]
use-sasl = true

Second, create a main SASL configuration file called svn. conf in a place where the SASL library can find it—typically in the
directory where SASL plug-ins are located. You'll have to locate the plug-in directory on your particular system, such as/ usr/
i b/sasl 2/ or/etc/sasl 2/.(Notethat thisisnot thesvnser ve. conf filethat lives within arepository!)

OnaWindowsserver, you'll also haveto edit the system registry (using atool such asr egedit) totell SASL wheretofind things. Create
aregistry key named [HKEY _LOCAL_MACHI NE\ SOFTWARE\ Car negi e Mel I on\ Proj ect Cyrus\SASL Library],
and place two keysinside it: akey called Sear chPat h (whose value is a path to the directory containing the SASL sasl *. dl |
plug-in libraries), and a key called Conf Fi | e (whose value is a path to the parent directory containing the svn. conf file you
created).

Because SASL provides so many different kinds of authentication mechanisms, it would be foolish (and far beyond the scope of this
book) to try to describe every possible server-side configuration. Instead, we recommend that you read the documentation supplied
inthedoc/ subdirectory of the SASL source code. It goesinto great detail about every mechanism and how to configure the server
appropriately for each. For the purposes of this discussion, we'll just demonstrate a simple example of configuring the DIGEST-MD5
mechanism. For example, if your svn. conf file contains the following:

pwcheck_met hod: auxprop
auxprop_pl ugi n: sasl db

sasl db_path: /etc/my_sasl db
mech_|ist: DI GEST- MD5

you've told SASL to advertise the DIGEST-MD5 mechanism to clients and to check user passwords against a private password
databaselocated at / et ¢/ my_sasl| db. A system administrator can then use the saspasswd2 program to add or modify usernames
and passwords in the database:

$ sasl passwd2 -c -f /etc/nmy_sasldb -u real musernanme

A few words of warning: first, make sure the “realm” argument to saslpasswd2 matches the same realm you've defined in your
repository'ssvnser ve. conf filg; if they don't match, authentication will fail. Also, due to a shortcoming in SASL, the common
realm must be a string with no space characters. Finally, if you decide to go with the standard SASL password database, make sure
the svnserve program has read access to the file (and possibly write access as well, if you're using a mechanism such as OTP).

Thisisjust one simple way of configuring SASL. Many other authenti cation mechanisms are available, and passwords can be stored
in other places such asin LDAP or a SQL database. Consult the full SASL documentation for details.

Remember that if you configure your server to only allow certain SASL authentication mechanisms, thisforcesall connecting clients
to have SASL support aswell. Any Subversion client built without SASL support (whichincludesall pre-1.5 clients) will be unableto
authenticate. On the one hand, this sort of restriction may be exactly what you want (“My clients must all use Kerberos!”). However,
if you still want non-SASL clientsto be able to authenticate, be sure to advertise the CRAM-MD5 mechanism asan option. All clients
are able to use CRAM-MDD5, whether they have SASL capabilities or not.

SASL encryption
SASL is aso able to perform data encryption if a particular mechanism supports it. The built-in CRAM-MD5 mechanism doesn't

support encryption, but DIGEST-MD5 does, and mechanisms such as SRP actually require use of the OpenSSL library. To enable
or disable different levels of encryption, you can set two valuesin your repository'ssvnser ve. conf file:

[sasl]

172

Server Configuration

use-sasl = true
m n-encryption = 128
max- encryption = 256

The mi n- encrypti on and max-encrypti on variables control the level of encryption demanded by the server. To disable
encryption completely, set both values to 0. To enable simple checksumming of data (i.e., prevent tampering and guarantee data
integrity without encryption), set both values to 1. If you wish to allow—but not require—encryption, set the minimum value to 0,
and the maximum value to some hit length. To require encryption unconditionally, set both values to numbers greater than 1. In our
previous example, we require clientsto do at least 128-bit encryption, but no more than 256-bit encryption.

Tunneling over SSH

svnserve's built-in authentication (and SASL support) can be very handy, because it avoids the need to create real system accounts.
On the other hand, some administrators already have well-established SSH authentication frameworks in place. In these situations,
all of the project's users already have system accounts and the ability to “ SSH into” the server machine.

It's easy to use SSH in conjunction with svnserve. The client simply usesthesvn+ssh: // URL scheme to connect:

$ whoani
harry

$ svn list svn+ssh://host.exanpl e. com repos/ proj ect
harryssh@ost . exanpl e. com s password: *****

f oo
bar
baz

In this example, the Subversion client isinvoking alocal ssh process, connecting to host . exanpl e. com authenticating as the
user har r yssh (according to SSH user configuration), then spawning a private svnserve process on the remote machine running
asthe user har r yssh. The svnserve command is being invoked in tunnel mode (- t), and its network protocol is being “tunneled”
over the encrypted connection by ssh, the tunnel agent. If the client performs a commit, the authenticated username har r yssh will
be used as the author of the new revision.

The important thing to understand here is that the Subversion client is not connecting to arunning svnser ve daemon. This method of
access doesn't require adaemon, nor does it notice oneif present. It relies wholly on the ability of ssh to spawn atemporary svnserve
process, which then terminates when the network connection is closed.

When using svn+ssh: // URLSsto access a repository, remember that it's the ssh program prompting for authentication, and not
the svn client program. That means there's no automatic password-caching going on (see the section called “ Caching credentials’).
The Subversion client often makes multiple connectionsto the repository, though users don't normally notice this due to the password
caching feature. When using svn+ssh: // URLSs, however, users may be annoyed by ssh repeatedly asking for a password for
every outbound connection. The solution is to use a separate SSH password-caching tool such as ssh-agent on a Unix-like system,
or pageant on Windows.

When running over atunnel, authorization is primarily controlled by operating system permissions to the repository's database files;
it's very much the sasme asif Harry were accessing the repository directly viaafi | e: // URL. If multiple system users are going to
be accessing the repository directly, you may want to place them into a common group, and you'll need to be careful about umasks
(be sure to read the section called “ Supporting Multiple Repository Access Methods” later in this chapter). But even in the case of
tunneling, you can till use the svnser ve. conf file to block access, by simply setting aut h- access = read or aut h-

access = none.?

°Note that usi ng any sort of svnserve-enforced access control at all isabit pointless; the user already has direct access to the repository database.

173

Server Configuration

Y ou'd think that the story of SSH tunneling would end here, but it doesn't. Subversion allows you to create custom tunnel behaviors
in your runtime conf i g file (see the section called “Runtime Configuration Area’). For example, suppose you want to use RSH
instead of SSH.2 In the[t unnel s] section of your confi g file, simply defineit like this:

[tunnel s]
rsh = rsh --

And now, you can use this new tunnel definition by using a URL scheme that matches the name of your new variable: svn+rsh: / /

host / pat h. When using the new URL scheme, the Subversion client will actually be running the command r sh -- host
svnserve -t behindthescenes. If youincludeausernameinthe URL (e.g., svn+rsh: // user name@ost / pat h), theclient
will dsoincludethat initscommand (r sh -- user nanme@ost svnserve -t).

line. Thisisto prevent amalformed hosthname from being treated as another option to the tunnel command. Y ou should

Notice that when defining an RSH-based tunnel, we've added the - - end-of-options argument to the tunnel command
Q do the same for other tunnel programs (for example, SSH).

But you can define new tunneling schemes to be much more clever than that:

[tunnel s]
joessh = $JOESSH /opt/alternate/ssh -p 29934 --

This example demonstrates a couple of things. First, it shows how to make the Subversion client launch a very specific tunneling
binary (theonelocatedat/ opt / al t er nat e/ ssh) with specific options. Inthiscase, accessingansvn+j oessh: // URL would
invoke the particular SSH binary with- p 29934 as arguments—useful if you want the tunnel program to connect to a nonstandard
port.

Second, it shows how to define a custom environment variable that can override the name of the tunneling program. Setting the
SVN_SSHenvironment variableisaconvenient way to override the default SSH tunnel agent. But if you need to have several different
overrides for different servers, each perhaps contacting a different port or passing a different set of optionsto SSH, you can use the
mechanism demonstrated in this example. Now if we were to set the JOESSH environment variable, its value would override the
entire value of the tunnel variable—$JOESSH would be executed instead of / opt / al t er nat e/ ssh -p 29934.

SSH Configuration Tricks

It's possible to control not only the way in which the client invokes ssh, but also to control the behavior of sshd on your server
machine. In this section, we'll show how to control the exact svnserve command executed by sshd, as well as how to have multiple
users share a single system account.

Initial setup

To begin, locate the home directory of the account you'll be using to launch svnserve. Make sure the account has an SSH public/
private keypair installed, and that the user can log in via public-key authentication. Password authentication will not work, since all
of the following SSH tricks revolve around using the SSH aut hor i zed_keys file.

If it doesn't already exist, create the aut hor i zed_keys file (on Unix, typically ~/ . ssh/ aut hori zed_keys). Each linein
thisfile describes a public key that is allowed to connect. The lines are typically of the form:

ssh-dsa AAAABt ce9euch...user @xanpl e. com

Thefirst field describes the type of key, the second field is the base64-encoded key itself, and the third field is acomment. However,
it's alesser known fact that the entire line can be preceded by acommand field:

SWe don't actual ly recommend this, since RSH is notably less secure than SSH.

174

Server Configuration

command="pr ogrant ssh-dsa AAAABt ce9euch... user @xanpl e. com

When thecommand field is set, the SSH daemon will run the named program instead of the typical tunnel-mode svnser veinvocation
that the Subversion client asks for. This opens the door to a number of server-side tricks. In the following examples, we abbreviate
the lines of thefile as:

conmand="prograni’ TYPE KEY COMVENT

Controlling the invoked command

Because we can specify the executed server-side command, it's easy to name a specific svnserve binary to run and to pass it extra
arguments:

command="/pat h/to/svnserve -t -r /virtual/root" TYPE KEY COVMENT

In thisexample, / pat h/ t o/ svnser ve might be a custom wrapper script around svnserve which sets the umask (see the section
called “ Supporting Multiple Repository Access Methods'). It also shows how to anchor svnservein avirtua root directory, just as
one often does when running svnserve as a daemon process. This might be done either to restrict access to parts of the system, or
simply to relieve the user of having to type an absolute path inthesvn+ssh: // URL.

It's also possible to have multiple users share a single account. Instead of creating a separate system account for each user, generate
a public/private key pair for each person. Then place each public key into the aut hor i zed_keys file, one per line, and use the
--tunnel - user option:

conmmand="svnserve -t --tunnel-user=harry" TYPEL KEY1 harry@xanpl e. com
conmand="svnserve -t --tunnel-user=sally" TYPE2 KEY2 sal | y@xanpl e. com

This example alows both Harry and Sally to connect to the same account via public key authentication. Each of them has a custom
command that will be executed; the- - t unnel - user option tells svnserveto assume that the named argument is the authenticated
user. Without - - t unnel - user , it would appear as though al commits were coming from the one shared system account.

A final word of caution: giving a user access to the server via public-key in a shared account might still allow other forms of SSH
access, evenif you've set theconmand valueinaut hor i zed_keys. For example, the user may still get shell accessthrough SSH
or be able to perform X 11 or general port forwarding through your server. To give the user as little permission as possible, you may
want to specify a number of restrictive optionsimmediately after the command:

command="svnserve -t --tunnel -user=harry", no-port-forwarding, no-agent-forw
ar di ng, no- X11-f orwar di ng, no-pty TYPE1l KEY1 harry@xanpl e.com

Note that this all must be on one line—truly on oneline—since SSH aut hor i zed_keys filesdo not even allow the conventional
backslash character (\) for line continuation. Theonly reason we'veshown it with alinebreak istofit it on the physical page of abook.

httpd, the Apache HTTP Server

The Apache HTTP Server is a “heavy-duty” network server that Subversion can leverage. Via a custom module, httpd makes
Subversion repositories available to clients via the WebDAV/Deltav* protocol, which is an extension to HTTP 1.1. This protocol
takes the ubiquitous HTTP protocol that is the core of the World Wide Web, and adds writing—specifically, versioned writing—
capabilities. The result is a standardized, robust system that is conveniently packaged as part of the Apache 2.0 software, supported

4See http://www.webdayv.org/.

175

http://www.webdav.org/

Server Configuration

by numerous operating systems and third-party products, and doesn't require network administrators to open up yet another custom
port.5 While an Apache-Subversion server has more features than svnserve, it's aso a bit more difficult to set up. With flexibility
often comes more compl exity.

Much of the following discussion includes references to Apache configuration directives. While some examples are given of the use
of these directives, describing them in full is outside the scope of this chapter. The Apache team maintains excellent documentation,
publicly available on their web site at http://httpd.apache.org. For example, a genera reference for the configuration directives is
located at http://httpd.apache.org/docs-2.0/mod/directives.html.

Also, as you make changes to your Apache setup, it is likely that somewhere along the way a mistake will be made. If you are
not already familiar with Apache's logging subsystem, you should become aware of it. In your ht t pd. conf file are directives
that specify the on-disk locations of the access and error logs generated by Apache (the Cust onlLog and Er r or Log directives,
respectively). Subversion'smod_dav_svn uses Apache's error logging interface aswell. Y ou can always browse the contents of those
files for information that might reveal the source of a problem that is not clearly noticeable otherwise.

Prerequisites

To network your repository over HT TP, you basically need four components, availablein two packages. Y ou'll need Apachehttpd 2.0
or newer, the mod_dav DAV module that comes with it, Subversion, and the mod_dav_svn filesystem provider module distributed
with Subversion. Once you have all of those components, the process of networking your repository is as simple as:

 Getting httpd up and running with the mod_dav module
« |Installing the mod_dav_svn backend to mod_dav, which uses Subversion's libraries to access the repository
» Configuring your ht t pd. conf fileto export (or expose) the repository

Y ou can accomplish the first two items either by compiling httpd and Subversion from source code or by installing prebuilt binary
packages of them on your system. For the most up-to-date information on how to compile Subversion for use with the Apache HTTP
Server, aswell ashow to compile and configure Apacheitself for this purpose, seethel NSTALL fileinthetop level of the Subversion
source code tree.

Basic Apache Configuration

Once you have all the necessary components installed on your system, all that remains is the configuration of Apache via its
ht t pd. conf file. Instruct Apachetoload themod_dav_svn moduleusing theLoadMbdul e directive. Thisdirective must precede
any other Subversion-related configuration items. If your Apache wasinstalled using the default layout, your mod_dav_svn module
should have been installed in the nodul es subdirectory of the Apache install location (often / usr/ 1 ocal / apache2). The
LoadModul e directive has a simple syntax, mapping a named module to the location of a shared library on disk:

LoadModul e dav_svn_nodul e nmodul es/ nod_dav_svn. so

Apache interprets the LoadMbdul e configuration item's library path as relative to its own server root. If configured as previously
shown, Apache will look for the Subversion DAV module shared library in its own nodul es/ subdirectory. Depending on how
Subversion was installed on your system, you might need to specify a different path for this library altogether, perhaps even an
absolute path such asin the following example:

LoadModul e dav_svn_nodul e C./ Subversion/lib/npd_dav_svn. so

Notethat if mod_dav was compiled as a shared object (instead of statically linked directly to the httpd binary), you'll need asimilar
LoadModul e statement for it, too. Be sure that it comes before the mod_dav_svn line;

SThey really hate doing that.

176

http://httpd.apache.org
http://httpd.apache.org/docs-2.0/mod/directives.html

Server Configuration

LoadModul e dav_nodul e nodul es/ nod_dav. so
LoadModul e dav_svn_nodul e nmodul es/ nod_dav_svn. so

Atalater location inyour configuration file, you now need to tell Apachewhere you keep your Subversion repository (or repositories).
TheLocat i on directive has an XML-like notation, starting with an opening tag and ending with a closing tag, with various other
configuration directives in the middle. The purpose of the Locat i on directive isto instruct Apache to do something special when
handling requests that are directed at a given URL or one of its children. In the case of Subversion, you want Apache to simply hand
off support for URLs that point at versioned resources to the DAV layer. You can instruct Apache to delegate the handling of all
URLs whose path portions (the part of the URL that follows the server's name and the optional port number) begin with/ r epos/
to aDAV provider whose repository islocated at / var / svn/ r eposi t or y using the following ht t pd. conf syntax:

<Location /repos>

DAV svn

SVNPat h /var/svn/repository
</ Locati on>

If you plan to support multiple Subversion repositories that will reside in the same parent directory on your local disk, you can usean
alternative directive—SVNPar ent Pat h—to indicate that common parent directory. For example, if you know you will be creating
multiple Subversion repositoriesin adirectory / var / svn that would be accessed viaURLssuchasht t p: / / my. ser ver. conl
svn/reposl, http://nmy.server.com svn/repos2, andsoon, you could usetheht t pd. conf configuration syntax in
the following example:

<Location /svn>
DAV svn

Automatically map any "/svn/foo" URL to repository /var/svn/foo
SVNPar ent Pat h /var/svn
</ Locati on>

Using this syntax, Apache will delegate the handling of all URLs whose path portions begin with / svn/ to the Subversion DAV
provider, which will then assume that any itemsin the directory specified by the SVNPar ent Pat h directive are actually Subversion
repositories. Thisisaparticularly convenient syntax in that, unlike the use of the SVNPat h directive, you don't haveto restart Apache
to add or remove hosted repositories.

Be sure that when you define your new Locat i on, it doesn't overlap with other exported locations. For example, if your main
Docunent Root isexported to/ www, do not export a Subversion repository in<Locat i on / www/ r epos>. If arequest comes
in for the URI / ww/ r epos/ f 00. ¢, Apache won't know whether to look for afiler epos/ f 00. ¢ inthe Docunent Root , or
whether to delegate mod_dav_svn to return f 00. ¢ from the Subversion repository. The result is often an error from the server of
theform 301 Moved Permanently.

Server Names and the COPY Request

Subversion makes use of the COPY request type to perform server-side copies of filesand directories. Aspart of the sanity checking
done by the Apache modules, the source of the copy is expected to be located on the same machine as the destination of the copy.
To satisfy this requirement, you might need to tell mod_dav the name you use as the hostname of your server. Generally, you can
usethe Ser ver Nane directivein ht t pd. conf to accomplish this.

Server Nane svn. exanpl e. com

If you are using Apache's virtual hosting support viathe NaneVi r t ual Host directive, you may needto usethe Ser ver Al i as
directive to specify additional names by which your server is known. Again, refer to the Apache documentation for full details.

177

Server Configuration

At this stage, you should strongly consider the question of permissions. If you've been running Apache for some time now as your
regular web server, you probably already have a collection of content—web pages, scripts, and such. These items have already been
configured with a set of permissions that allows them to work with Apache, or more appropriately, that allows Apache to work with
those files. Apache, when used as a Subversion server, will also need the correct permissions to read and write to your Subversion
repository.

You will need to determine a permission system setup that satisfies Subversion's requirements without messing up any previously
existing web page or script installations. This might mean changing the permissions on your Subversion repository to match thosein
use by other things that Apache serves for you, or it could mean using the User and Gr oup directivesin ht t pd. conf to specify
that Apache should run as the user and group that owns your Subversion repository. There is no single correct way to set up your
permissions, and each administrator will have different reasons for doing things a certain way. Just be aware that permission-related
problems are perhaps the most common oversight when configuring a Subversion repository for use with Apache.

Authentication Options

At this point, if you configured ht t pd. conf to contain something such as the following:

<Location /svn>

DAV svn

SVNPar ent Pat h /var/svn
</ Locati on>

your repository is “anonymously” accessible to the world. Until you configure some authentication and authorization policies, the
Subversion repositoriesthat you make availableviatheLocat i on directivewill be generally accessibleto everyone. In other words:

» Anyone can use a Subversion client to check out aworking copy of arepository URL (or any of its subdirectories).
» Anyone can interactively browse the repository's latest revision simply by pointing aweb browser to the repository URL.
» Anyone can commit to the repository.

Of course, you might have already set up apr e- conmi t hook script to prevent commits (see the section called “Implementing
Repository Hooks"). But asyou read on, you'll seethat it's also possible to use Apache's built-in methods to restrict accessin specific

ways.

of valid users network activity. See the section called “ Protecting network traffic with SSL” for how to configure your

Requiring authentication defends against invalid users directly accessing the repository, but does not guard the privacy
D server to support SSL encryption, which can provide that extralayer of protection.

Basic authentication

The easiest way to authenticate aclient isviathe HT TP Basi ¢ authenti cation mechanism, which simply uses ausername and password
to verify auser'sidentity. Apache provides the htpasswd util ity6 for managing files containing usernames and passwords.

Basic authentication is extremely insecure, because it sends passwords over the network in very nearly plain text. See
Q the section called “ Digest authentication” for details on using the much safer Digest mechanism.

First, create a password file and grant access to users Harry and Sally:

bsee http://httpd.apache.org/docs/current/programs/htpasswd.html.

178

http://httpd.apache.org/docs/current/programs/htpasswd.html

Server Configuration

$ ### First time: use -c to create the file
$ ### Use -mto use MD5 encryption of the password, which is nore secure
$ htpasswd -c -m/etc/svn-auth. ht passwd harry
New password: *****

Re-type new password: *****

Addi ng password for user harry

$ htpasswd -m/etc/svn-auth. ht passwd sally
New password: **x**x*x*

Re-type new password: ******x*

Addi ng password for user sally

$

Next, ensure that Apache has access to the modules which provide the Basic authentication and related functionality:
nod_aut h_basi ¢, nod_aut hn_fil e, and nod_aut hz_user . In many cases, these modules are compiled into httpd itself,
but if not, you might need to explicitly load one or more of them using the LoadModul e directive:

LoadModul e aut h_basi ¢c_nodul e nodul es/ nod_aut h_basi c. so
LoadModul e authn_file_nodul e nodul es/ nod_authn_file. so
LoadModul e aut hz_user nodul e noduel s/ nod_aut hz_user. so

After ensuring the Apache has access to the required functionality, you'll need to add some more directivesinsidethe<Locat i on>
block to tell Apache what type of authentication you wish to use, and just how to do so:

<Location /svn>
DAV svn
SVNPar ent Pat h /var/svn

Aut hentication: Basic

Aut hNane " Subversi on repository"

Aut hType Basi c

Aut hBasi cProvider file

Aut hUser Fi l e /etc/svn-aut h. ht passwd
</ Locat i on>

These directives work as follows:

» Aut hNane is an arbitrary name that you choose for the authentication domain. Most browsers display this name in the dialog
box when prompting for username and password.

» Aut hType specifies the type of authentication to use.

» Aut hBasi cProvi der specifies the Basic authentication provider to use for the location. In our example, we wish to consult
alocal password file.

* Aut hUser Fi | e specifiesthe location of the password file to use.
However, this<Locat i on> block doesn't yet do anything useful. It merely tells Apache that if authorization were required, it should
challenge the Subversion client for a username and password. (When authorization is required, Apache requires authentication as

well.) What's missing here, however, are directives that tell Apache which sorts of client requests require authorization; currently,
none do. The simplest thing isto specify that all requests require authorization by adding Requi re val i d- user to the block:

<Location /svn>

179

Server Configuration

DAV svn
SVNPar ent Pat h /var/ svn

Aut hentication: Basic

Aut hName " Subversion repository”

Aut hType Basi c

Aut hBasi cProvider file

Aut hUser Fi | e /etc/svn-auth. ht passwd

Aut horization: Authenticated users only
Require vali d-user
</ Locati on>

Refer to the section called “ Authorization Options” for more detail on the Requi r e directive and other ways to set authorization
policies.

The default value of the Aut hBasi cPr ovi der optionisfi | e, so wewon't bother including it in future examples.
Just know that if in a broader context you've set this value to something else, you'll need to explicitly resetittofi |l e
/ within your Subversion <Locat i on> block in order to get that behavior.

Digest authentication

Digest authentication is an improvement on Basic authentication which allows the server to verify aclient's identity without sending
the password over the network unprotected. Both client and server create a non-reversible MD5 hash of the username, password,
requested URI, and a nonce (number used once) provided by the server and changed each time authentication is required. The client
sends its hash to the server, and the server then verifies that the hashes match.

Configuring Apache to use Digest authentication is straightforward. Y ou'll need to ensure that the nod_aut h_di gest moduleis
available (instead of nod_aut h_basi c), and then make afew small variations on our prior example:

<Location /svn>
DAV svn
SVNPar ent Pat h /var/ svn

Aut hentication: Digest

Aut hName " Subversi on repository”
Aut hType Di gest

Aut hDi gest Provi der file

Aut hUser Fi | e /etc/svn-auth. htdi gest

Aut hori zation: Authenticated users only
Require valid-user
</ Locati on>

Notice that Aut hType isnow set to Di gest , and we specify a different path for Aut hUser Fi | e. Digest authentication uses a
different file format than Basic authentication, created and managed using Apache's htdigest utiIity7 rather than htpasswd. Digest
authentication also has the additional concept of a“realm”, which must match the value of the Aut hNane directive.

For digest authentication, the authentication provider is selected using the Aut hDi gest Pr ovi der as shown in
<> the previous example. As was the case with the Aut hBasi cPr ovi der directive, fi | e is the default value of the

’See http://httpd.apache.org/docs/current/programs/htdigest.html .

180

http://httpd.apache.org/docs/current/programs/htdigest.html

Server Configuration

Aut hDi gest Provi der option, so this line is not strictly required unless you need to override a different value
thereof inherited from a broader configuration context.

The password file can be created as follows:

$ ### First time: use -c to create the file

$ htdigest -c /etc/svn-auth. htdi gest "Subversion repository" harry
Addi ng password for harry in real m Subversion repository.

New password: *****

Re-type new password: *****

$ htdigest /etc/svn-auth. htdigest "Subversion repository" sally
Addi ng user sally in real m Subversion repository

New password: *****x*x*

Re-type new password: *****x*x*

$

Authorization Options

At this point, you've configured authentication, but not authorization. Apacheis able to challenge clients and confirm identities, but
it has not been told how to allow or restrict access to the clients bearing those identities. This section describes two strategies for
controlling access to your repositories.

Blanket access control

The simplest form of access control is to authorize certain users for either read-only access to a repository or read/write access to
arepository.

You can restrict access on al repository operations by adding Requi re val i d- user directly inside the <Locat i on> block.
The example from the section called “Digest authentication” allows only clients that successfully authenticate to do anything with
the Subversion repository:

<Location /svn>
DAV svn
SVNPar ent Pat h /var/svn

Aut henti cation: Digest

Aut hNane " Subversi on repository"
Aut hType Di gest

Aut hUser Fil e /etc/svn-auth. htdi gest

Aut horization: Authenticated users only
Require vali d-user
</ Locati on>

Sometimes you don't need to run such atight ship. For example, Subversion's own source code repository at http://svn.collab.net/
repos/svn alows anyone in the world to perform read-only repository tasks (such as checking out working copies and browsing the
repository), but restricts write operations to authenticated users. The Li mi t and Li mi t Except directives allow for this type of
selectiverestriction. Likethe Locat i on directive, these blocks have starting and ending tags, and you would nest them inside your
<Locat i on> block.

The parameters present onthe Li mi t and Li mi t Except directives are HTTP request types that are affected by that block. For
example, to allow anonymous read-only operations, you would use the Li mi t Except directive (passing the GET, PROPFI ND,

181

http://svn.collab.net/repos/svn
http://svn.collab.net/repos/svn

Server Configuration

OPTI ONS, and REPCORT request type parameters) and place the previously mentioned Requi re val i d- user directive inside
the<Li m t Except > block instead of just inside the <Locat i on> block.

<Location /svn>
DAV svn
SVNPar ent Pat h /var/svn

Aut henti cation: Digest

Aut hNane " Subversi on repository"
Aut hType Di gest

Aut hUser Fil e /etc/svn-auth. htdi gest

Authorization: Authenticated users only for non-read-only
(wite) operations; allow anonynous reads
<Li m t Except GET PROPFI ND OPTI ONS REPORT>
Require vali d-user
</ LimtExcept>
</ Locat i on>

These are only a few simple examples. For more in-depth information about Apache access control and the Requi r e directive,
take alook at the Securi ty section of the Apache documentation's tutorials collection at http://httpd.apache.org/docs-2.0/misc/
tutorials.html.

Per-directory access control

It's possible to set up finer-grained permissions using mod_authz_svn. This Apache module grabs the various opaque URL s passing
from client to server, asks mod_dav_svn to decode them, and then possibly vetoes requests based on access policies defined in a
configuration file.

If you've built Subversion from source code, mod_authz_svn is automatically built and installed alongside mod_dav_svn. Many
binary distributionsinstall it automatically aswell. To verify that it'sinstalled correctly, make sureit comesright after mod_dav_svn's
LoadModul e directiveinht t pd. conf :

LoadModul e dav_nodul e nodul es/ nod_dav. so
LoadModul e dav_svn_nodul e nodul es/ nod_dav_svn. so
LoadModul e aut hz_svn_nodul e nodul es/ nod_aut hz_svn. so

To activate this module, you need to configure your <Locat i on> block to use the Aut hzSVNAccessFi | e directive, which
specifiesafile containing the permissions policy for pathswithin your repositories. (In amoment, we'll discusstheformat of that file.)

Apache is flexible, so you have the option to configure your block in one of three general patterns. To begin, choose one of these
basic configuration patterns. (The following examples are very simple; look at Apache's own documentation for much more detail
on Apache authentication and authorization options.)

The most open approach is to allow access to everyone. This means Apache never sends authentication challenges, and al users are
treated as “anonymous’. (See Example 6.2, “A sample configuration for anonymous access’.)

Example 6.2. A sample configuration for anonymous access

<Location /repos>
DAV svn
SVNPar ent Pat h /var/ svn

182

http://httpd.apache.org/docs-2.0/misc/tutorials.html
http://httpd.apache.org/docs-2.0/misc/tutorials.html

Server Configuration

Aut hentication: None

Aut hori zati on: Pat h-based access control
Aut hzSVNAccessFil e /path/to/access/file
</ Locati on>

On the opposite end of the paranocia scale, you can configure Apache to authenticate al clients. This block unconditionally requires
authentication viathe Requi re val i d- user directive, and defines a means to authenticate valid users. (See Example 6.3, “A
sample configuration for authenticated access’.)

Example 6.3. A sample configuration for authenticated access

<Location /repos>
DAV svn
SVNPar ent Pat h /var/ svn

Aut henti cation: Digest

Aut hName " Subversion repository”
Aut hType Di gest

Aut hUser Fi | e /etc/ svn-auth. ht di gest

Aut hori zation: Path-based access control; authenticated users only
Aut hzSVNAccessFil e /path/to/access/file
Require vali d-user

</ Locati on>

A third very popular pattern is to alow a combination of authenticated and anonymous access. For example, many administrators
want to allow anonymous usersto read certain repository directories, but restrict accessto more sensitive areas to authenticated users.
In this setup, all users start out accessing the repository anonymously. If your access control policy demands areal username at any
point, Apache will demand authentication from the client. To do this, use both the Sat i sfy Any and Requi re val i d-user

directives. (See Example 6.4, “ A sample configuration for mixed authenti cated/anonymous access’.)

Example 6.4. A sample configuration for mixed authenticated/anonymous access

<Location /repos>
DAV svn
SVNPar ent Pat h /var/ svn

Aut henti cation: Di gest

Aut hName " Subversion repository”
Aut hType Di gest

Aut hUser Fil e /etc/svn-auth. ht di gest

Aut hori zation: Path-based access control; try anonynpous access

first, but authenticate if necessary
Aut hzSVNAccessFil e /path/to/access/file
Satisfy Any

Require vali d-user
</ Locati on>

The next step is to create the authorization file containing access rules for particular paths within the repository. We describe how
later in this chapter, in the section called “ Path-Based Authorization”.

183

Server Configuration

Disabling path-based checks

The mod_dav_svn module goes through alot of work to make sure that data you've marked “unreadable” doesn't get accidentally
leaked. This means it needs to closely monitor all of the paths and file-contents returned by commands such as svn checkout and
svn update. If these commands encounter a path that isn't readable according to some authorization policy, the path is typicaly
omitted altogether. In the case of history or rename tracing—for example, running acommand suchassvn cat -r OLD foo.c
on afile that was renamed long ago—the rename tracking will simply halt if one of the object's former names is determined to be
read-restricted.

All of this path checking can sometimes be quite expensive, especially in the case of svn log. When retrieving alist of revisions, the
server looks at every changed path in each revision and checksit for readability. If an unreadable path is discovered, it's omitted from
thelist of the revision's changed paths (normally seen with the - - ver bose (- v) option), and the whole log message is suppressed.
Needless to say, this can be time-consuming on revisions that affect a large number of files. This is the cost of security: even if
you haven't configured a module such as mod_authz_svn at all, the mod_dav_svn module is still asking Apache httpd to run
authorization checks on every path. The mod_dav_svn module has no idea what authorization modules have been installed, so all
it can do is ask Apache to invoke whatever might be present.

On the other hand, there's also an escape hatch of sorts, which allows you to trade security features for speed. If you're not enforcing
any sort of per-directory authorization (i.e., not using mod_authz_svn or similar modul€), you can disable all of this path checking.
Inyour ht t pd. conf file, usethe SVYNPat hAut hz directive as shown in Example 6.5, “ Disabling path checks altogether”.

Example 6.5. Disabling path checks altogether

<Location /repos>
DAV svn
SVNPar ent Pat h /var/ svn

SVNPat hAut hz of f
</ Locati on>

TheSVNPat hAut hz directiveis“on” by default. When set to“ off,” all path-based authorization checking isdisabled; mod_dav_svn
stops invoking authorization checks on every path it discovers.

Protecting network traffic with SSL

Connecting to arepository viaht t p: / / meansthat all Subversion activity is sent across the network in the clear. This means that
actions such as checkouts, commits, and updates could potentially be intercepted by an unauthorized party “sniffing” network traffic.
Encrypting traffic using SSL is agood way to protect potentially sensitive information over the network.

If a Subversion client is compiled to use OpenSSL, it gains the ability to speak to an Apache server viahtt ps: // URLS, so al
traffic is encrypted with a per-connection session key. The WebDAYV library used by the Subversion client is not only able to verify
server certificates, but can also supply client certificates when challenged by the server.

Subversion server SSL certificate configuration

It's beyond the scope of this book to describe how to generate client and server SSL certificates and how to configure Apache to use
them. Many other references, including Apache's own documentation, describe the process.

SSL certificates from well-known entities generally cost money, but at a bare minimum, you can configure Apache to
@) use a self-signed certificate generated with atool such as OpenSSL (http://openssl.org). 2

Swhile self-signed certificates are still vulnerable to a“ man-in-the-middle” attack, such an attack is much more difficult for a casual observer to pull off, compared
to sniffing unprotected passwords.

184

http://openssl.org

Server Configuration

Subversion client SSL certificate management
When connecting to Apacheviaht t ps: //, aSubversion client can receive two different types of responses:
* A server certificate

A challenge for aclient certificate

Server certificate

When the client recelves a server certificate, it needsto verify that the server iswho it claimsto be. OpenSSL does thisby examining
the signer of the server certificate, or certificate authority (CA). If OpenSSL is unable to automatically trust the CA, or if some other
problem occurs (such as an expired certificate or hosthame mismatch), the Subversion command-line client will ask you whether
you want to trust the server certificate anyway:

$ svn list https://host.exanpl e.conirepos/ project

Error validating server certificate for 'https://host.exanpl e.com 443’
- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate nanually!

Certificate information:

- Hostname: host. exanpl e. com

- Valid: fromJan 30 19:23:56 2004 GMI until Jan 30 19:23:56 2006 GMI

- Issuer: CA, exanple.com Sometown, California, US

- Fingerprint: 7d:el:a9:34:33:39: ba: 6a: €9: a5: c4: 22: 98: 7b: 76: 5¢: 92: a0: 9c: 7b

(R)ej ect, accept (t)enmporarily or accept (p)ernmanently?

Thisdialogueis essentially the same question you may have seen coming from your web browser (which isjust another HTTP client
like Subversion). If you choose the (p) ermanent option, Subversion will cache the server certificate in your private runtime aut h/
area, just as your username and password are cached (see the section called “Caching credentials’), and will automatically trust the
certificate in the future.

Your runtime ser ver s file also gives you the ability to make your Subversion client automatically trust specific CAs, either
globally or on a per-host basis. Simply set thessl - aut hority-fil es variable to a semicolon-separated list of PEM-encoded
CA certificates:

[gl obal]
ssl-authority-files = /path/to/ CAcertl. pem/path/to/ CAcert2. pem

Many OpenSSL installations also have a predefined set of “ default” CAsthat are nearly universally trusted. To make the Subversion
client automatically trust these standard authorities, set thessl -t r ust - def aul t - ca variabletot r ue.

Client certificate challenge

If the client receives a challenge for a certificate, the server is asking the client to prove its identity. The client must send back
a certificate signed by a CA that the server trusts, along with a challenge response which proves that the client owns the private
key associated with the certificate. The private key and certificate are usually stored in an encrypted format on disk, protected by
a passphrase. When Subversion receives this challenge, it will ask you for the path to the encrypted file and the passphrase that
protectsit:

$ svn list https://host.exanpl e.com repos/project

185

Server Configuration

Aut hentication realm https://host.exanple.com 443
Client certificate filenane: /path/to/ny/cert.pl2
Passphrase for '/path/to/my/cert.pl2': **x*xx*x

Noticethat the client credentialsare storedina. p12 file. To use aclient certificate with Subversion, it must bein PK CS#12 format,
which is a portable standard. Most web browsers are able to import and export certificates in that format. Another option is to use
the OpenSSL command-line tools to convert existing certificates into PK CS#12.

Theruntimeser ver s filealso allowsyou to automate this challenge on aper-host basis. If you setthessl -cl i ent-cert-file
and ssl -client-cert-password variables, Subversion can automatically respond to a client certificate challenge without
prompting you:

[gr oups]
exanpl ehost = host. exanpl e. com

[exanpl ehost]
ssl-client-cert-file = /path/to/ ny/cert.pl2
ssl-client-cert-password = sonepassword

More security-conscious folk might want to exclude ssl - cl i ent - cert - passwor d to avoid storing the passphrase in the clear
on disk.

Extra Goodies

We've covered most of the authentication and authorization options for Apache and mod_dav_svn. But there are a few other nice
features that Apache provides.

Repository browsing

One of the most useful benefits of an Apache/WebDAV configuration for your Subversion repository is that your versioned files
and directories areimmediately available for viewing via a regular web browser. Since Subversion uses URL s to identify versioned
resources, those URL s used for HTTP-based repository access can be typed directly into aweb browser. Y our browser will issue an
HTTP CGET request for that URL ; based on whether that URL represents a versioned directory or file, mod_dav_svn will respond
with adirectory listing or with file contents.

URL syntax

If the URLs do not contain any information about which version of the resource you wish to see, mod_dav_svn will answer with
the youngest version. This functionality has the wonderful side effect that you can pass around Subversion URLs to your peers as
references to documents, and those URLs will always point at the latest manifestation of that document. Of course, you can even
use the URL s as hyperlinks from other web sites, too.

As of Subversion 1.6, mod_dav_svn supports a public URI syntax for examining older revisions of both files and directories. The
syntax uses the query string portion of the URL to specify either or both of a peg revision and operative revision, which Subversion
will then use to determine which version of thefile or directory to display to your web browser. Add the query string name/value pair
p=PEGREV, where PEGREV is arevision number, to specify the peg revision you wish to apply to the request. Use r =REV, where
REV is arevision number, to specify an operative revision.

For example, if you wish to see the latest version of aREADVE. t xt filelocated in your project's/ t r unk, point your web browser
to that file's repository URL, which might look something like the following:

186

Server Configuration

htt p:// host. exanpl e. com r epos/ proj ect/trunk/ README. t xt

If you now wish to see some older version of that file, add an operative revision to the URL's query string:

htt p:// host. exanpl e. com r epos/ proj ect/trunk/ READVE. t xt ?r=1234

What if thething you'retrying to view no longer existsin the youngest revision of therepository? That'swhere apeg revisionishandy:

http://host. exanpl e. com repos/ proj ect/trunk/ del et ed-t hi ng. t xt ?p=321

And of course, you can combine peg revision and operative revision specifiers to fine-tune the exact item you wish to view:

htt p:// host. exanpl e. com r epos/ proj ect/trunk/renamed-t hi ng. t xt ?2p=123&r =21

The previous URL would display revision 21 of the object which, inrevision 123, waslocated at/ t r unk/ r enaned- t hi ng. t xt
in the repository. See the section called “Peg and Operative Revisions’ for a detailed explanation of these “peg revision” and
“operative revision” concepts. They can be a bit tricky to wrap your head around.

As areminder, this feature of mod_dav_svn offers only a limited repository browsing experience. Y ou can see directory listings
and file contents, but no revision properties (such as commit log messages) or file/directory properties. For folks who require more
extensive browsing of repositories and their history, there are several third-party software packages which offer this. Some examples
include ViewV C (http://viewvc.tigris.org), Trac (http://trac.edgewall.org) and WebSV N (http://websvn.info). These third-party tools
don't affect mod_dav_svn's built-in “browseability”, and generally offer a much wider set of features, including the display of the
aforementioned property sets, display of content differences between file revisions, and so on.

Proper MIME type

When browsing a Subversion repository, theweb browser getsaclue about how to render afile'scontentsby looking at the Cont ent -
Type: header returned in Apache's response to the HTTP GET request. The value of this header is some sort of MIME type. By
default, Apache will tell the web browsersthat all repository files are of the “default” MIME type, typically t ext / pl ai n. Thiscan
be frustrating, however, if a user wishes repository files to render as something more meaningful—for example, it might be nice to
haveaf 0o. ht m fileinthe repository actually render as HTML when browsing.

To make this happen, you need only to make sure that your files have the proper svn: m ne-t ype set. We discuss this in more
detail in the section called “File Content Type”, and you can even configure your client to automatically attach proper svn: m ne-
t ype propertiesto files entering the repository for the first time; see the section called “ Automatic Property Setting”.

Continuing our example, if one were to set the svn: ni nme-t ype property tot ext/ ht ml on file f oo. ht m , Apache would
properly tell your web browser to render the fileas HTML. One could also attach proper i mage/ * MIME-type properties to image
files and ultimately get an entire web site to be viewable directly from arepository! There's generally no problem with this, as long
as the web site doesn't contain any dynamically generated content.

Customizing the look

You generally will get more use out of URLSs to versioned files—after all, that's where the interesting content tends to lie. But you
might have occasion to browse a Subversion directory listing, where you'll quickly note that the generated HTML used to display that
listing is very basic, and certainly not intended to be aesthetically pleasing (or even interesting). To enable customization of these
directory displays, Subversion provides an XML index feature. A single SVNI ndex XSLT directivein your repository'sLocat i on
block of ht t pd. conf will instruct mod_dav_svn to generate XML output when displaying a directory listing, and to reference
the XSLT stylesheet of your choice:

<Location /svn>

187

http://viewvc.tigris.org
http://trac.edgewall.org
http://websvn.info

Server Configuration

DAV svn
SVNPar ent Pat h /var/ svn
SVNI ndexXSLT "/ svni ndex. xsl "

</ Locati on>

Using the SYNI ndex XSLT directive and acreative XSLT stylesheet, you can make your directory listings match the color schemes
and imagery used in other parts of your web site. Or, if you'd prefer, you can use the sample stylesheets provided in the Subversion
source distribution'st ool s/ xsl t/ directory. Keep in mind that the path provided to the SVNI ndex XSLT directory is actually a
URL path—browsers need to be able to read your stylesheets to make use of them!

Listing repositories

If you're serving a collection of repositories from a single URL viathe SVNPar ent Pat h directive, then it's also possible to have
Apache display al available repositories to aweb browser. Just activate the SVNLi st Par ent Pat h directive:

<Location /svn>
DAV svn
SVNPar ent Pat h /var/svn
SVNLi st Par ent Pat h on

</ Locati on>

If a user now points her web browser to the URL htt p:// host. exanpl e. conf svn/, shell see a list of all Subversion
repositories sittingin/ var / svn. Obvioudly, this can be a security problem, so this feature is turned off by default.

Apache logging

Because Apacheis an HTTP server at heart, it contains fantastically flexible logging features. It's beyond the scope of this book to
discuss al of the ways logging can be configured, but we should point out that even the most generic ht t pd. conf filewill cause
Apache to produce two logs: er r or _| og and access_| og. These logs may appear in different places, but are typically created
in the logging area of your Apache installation. (On Unix, they often livein/ usr/ | ocal / apache2/ | ogs/ .)

The error _| og describes any internal errors that Apache runsinto as it works. The access_|I og file records every incoming
HTTP request received by Apache. This makesit easy to see, for example, which IP addresses Subversion clients are coming from,
how often particular clients use the server, which users are authenticating properly, and which requests succeed or fail.

Unfortunately, because HTTP is a stateless protocol, even the simplest Subversion client operation generates multiple network
requests. It's very difficult to look at theaccess_| og and deduce what the client was doing—most operations |ook like a series of
cryptic PROPPATCH, GET, PUT, and REPORT requests. To make things worse, many client operations send nearly identical series
of requests, so it's even harder to tell them apart.

mod_dav_svn, however, can cometo your aid. By activating an “operational logging” feature, you can ask mod_dav_svn to create
a separate log file describing what sort of high-level operations your clients are performing.

To do this, you need to make use of Apache's Cust onmliog directive (which is explained in more detail in Apache's own
documentation). Be sure to invoke this directive outside your Subversion Locat i on block:
<Location /svn>

DAV svn

</ Locati on>

188

Server Configuration

CustomnmLog | ogs/svn_logfile "% % % SVYN- ACTI ON} e" env=SVN- ACTI ON

In this example, we're asking Apache to create a special logfile, svn_| ogfi | e, in the standard Apache | ogs directory. The %
and % variables are replaced by the time and username of the request, respectively. The really important parts are the two instances
of SVN- ACTI ON. When Apache sees that variable, it substitutes the value of the SVN- ACTI ON environment variable, which is
automatically set by mod_dav_svn whenever it detects a high-level client action.

So, instead of having to interpret atraditional access_| og like this:

[26/ Jan/ 2007: 22: 25: 29 -0600] "PROPFIND /svn/cal c/!svn/vcc/default HTTP/1.1" 207 398
[26/ Jan/ 2007: 22: 25: 29 -0600] "PROPFIND /svn/cal c/!svn/bln/59 HITP/1.1" 207 449

[26/ Jan/ 2007: 22: 25: 29 -0600] "PROPFIND /svn/calc HITP/1.1" 207 647

[26/ Jan/ 2007: 22: 25: 29 -0600] "REPORT /svn/cal c/!svn/vcc/default HTTP/1.1" 200 607

[26/ Jan/ 2007: 22: 25: 31 -0600] "OPTIONS /svn/calc HITP/1.1" 200 188

[26/ Jan/ 2007: 22: 25: 31 -0600] "MKACTIVITY /svn/cal c/!svn/act/e6035ef 7- 5df 0- 4acO-
b811-4be7c823f 998 HITP/ 1.1" 201 227

you can peruse amuch more intelligiblesvn_| ogfi | e likethis:

[26/ Jan/ 2007: 22: 24: 20 -0600] - get-dir /tags r1729 props

[26/ Jan/ 2007: 22: 24: 27 -0600] - update /trunk r1729 depth=infinity

[26/ Jan/ 2007: 22: 25: 29 -0600] - status /trunk/foo r1729 depth=infinity
[26/ Jan/ 2007: 22: 25: 31 -0600] sally commit r1730

In addition to the SVN- ACTI ON environment variable, mod_dav_svn aso populates the SVN- REPCS and SVN- REPCS- NAVE
variables, which carry the filesystem path to the repository and the basename thereof, respectively. You might wish to include
referencesto one or both of thesevariablesinyour Cust onlog format string, too, especialy if you are combining usage information
from multiple repositoriesinto asingle log file.

For an exhaustive list of all actions logged, see the section called “High-level Logging”.
Write-through proxying

One of the nice advantages of using Apache asa Subversion server isthat it can be set up for simplereplication. For example, suppose
that your team is distributed across four offices around the globe. The Subversion repository can exist only in one of those offices,
which means the other three officeswill not enjoy accessing it—they're likely to experience significantly slower traffic and response
times when updating and committing code. A powerful solution is to set up a system consisting of one master Apache server and
several slave Apache servers. If you place a lave server in each office, users can check out aworking copy from whichever saveis
closest to them. All read requests go to their local slave. Write requests get automatically routed to the single master server. When the
commit completes, the master then automatically “pushes’ the new revision to each slave server using the svnsync replication tool.

This configuration creates a huge perceptual speed increase for your users, because Subversion client traffic istypically 80-90% read
requests. And if those requests are coming from alocal server, it's ahuge win.

In this section, we'll walk you through a standard setup of this single-master/multiple-slave system. However, keep in mind that your
servers must be running at least Apache 2.2.0 (with mod_pr oxy loaded) and Subversion 1.5 (mod_dav_svn).

Configure the servers
First, configure your master server'sht t pd. conf filein the usual way. Make the repository available at a certain URI location,

and configure authentication and authorization however you'd like. After that's done, configure each of your “slave’ serversin the
exact same way, but add the special SVNMast er URI directive to the block:

189

Server Configuration

<Location /svn>
DAV svn
SVNPat h /var/svn/repos
SVNvast er URI http://master. exanpl e. com svn

</ Locati on>

Thisnew directivetellsaslave server toredirect all write requeststo the master. (Thisis done automatically viaApache'smod_proxy
module.) Ordinary read requests, however, are still serviced by the slaves. Be surethat your master and slave serversall have matching
authentication and authorization configurations; if they fall out of sync, it can lead to big headaches.

Next, we need to deal with the problem of infinite recursion. With the current configuration, imagine what will happen when a
Subversion client performs a commit to the master server. After the commit completes, the server uses svnsync to replicate the
new revision to each slave. But because svnsync appears to be just another Subversion client performing a commit, the slave will
immediately attempt to proxy the incoming write request back to the master! Hilarity ensues.

The solution to this problem isto have the master pushrevisionsto adifferent <Locat i on> ontheslaves. Thislocationisconfigured
to not proxy write requests at all, but to accept normal commits from (and only from) the master's | P address:

<Locati on /svn-proxy-sync>
DAV svn
SVNPat h /var/svn/repos
Order deny, al | ow
Deny fromall
Only let the server's |IP address access this Location:
Al'l ow from 10. 20. 30. 40

</ Locati on>
Set up replication

Now that you've configured your Locat i on blocks on master and slaves, you need to configure the master to replicate to the slaves.
This is done the usual way— using svnsync. If you're not familiar with this tool, see the section called “Repository Replication”
for details.

First, make sure that each dave repository has a pr e-r evpr op- change hook script which allows remote revision property
changes. (Thisis standard procedure for being on the receiving end of svnsync.) Then log into the master server and configure each
of the slave repository URIsto receive data from the master repository on the local disk:

$ svnsync init http://slavel. exanpl e. conf svn-proxy-sync file:///var/svn/repos
Copi ed properties for revision O.
$ svnsync init http://slave2. exanpl e. conf svn-proxy-sync file:///var/svn/repos
Copi ed properties for revision O.
$ svnsync init http://slave3. exanpl e. conf svn-proxy-sync file:///var/svn/repos
Copi ed properties for revision O.

Performthe initial replication
$ svnsync sync http://slavel. exanpl e. conf svn-proxy-sync

Transmitting file data
Committed revision 1.

190

Server Configuration

Copi ed properties for revision 1.
Transmitting file data
Conmitted revision 2.

Copi ed properties for revision 2.

$ svnsync sync http://slave2. exanpl e. conf svn-proxy-sync
Transmitting file data

Conmitted revision 1.

Copi ed properties for revision 1.

Transmitting file data

Conmitted revision 2.

Copi ed properties for revision 2.

$ svnsync sync http://slave3. exanpl e. conf svn-proxy-sync
Transmitting file data

Conmitted revision 1.

Copi ed properties for revision 1.

Transmitting file data

Conmitted revision 2.

Copi ed properties for revision 2.

After thisis done, we configure the master server's post - conmmi t hook script to invoke svnsync on each slave server:

#!/bin/sh
Post-commit script to replicate newly conmtted revision to sl aves

svnsync sync http://slavel. exanpl e. com svn- proxy-sync > /dev/null 2>&1 &
svnsync sync http://slave2. exanpl e. com svn- proxy-sync > /dev/null 2>&1 &
svnsync sync http://slave3. exanpl e. com svn- proxy-sync > /dev/null 2>&1 &

The extrabits on the end of each line aren't necessary, but they're a sneaky way to allow the sync commands to run in the background
so that the Subversion client isn't left waiting forever for the commit to finish. In addition to thispost - commi t hook, you'll need
apost - revpr op- change hook aswell so that when a user, say, modifies alog message, the save servers get that change al so:

#!/bin/sh
Post-revprop-change script to replicate revprop-changes to sl aves

REV=${ 2}

svnsync copy-revprops http://slavel. exanpl e. conl svn-proxy-sync ${REV} > /dev/null 2>&1
&

svnsync copy-revprops http://slave2. exanpl e. con svn-proxy-sync ${REV} > /dev/null 2>&1
&

svnsync copy-revprops http://slave3. exanpl e. conl svn-proxy-sync ${REV} > /dev/null 2>&1
&

The only thing we've left out here is what to do about user-level locks (of the svn lock variety). Locks are enforced by the master
server during commit operations; but all the information about locks is distributed during read operations such as svn update and
svn status by the slave server. As such, afully functioning proxy setup needsto perfectly replicate lock information from the master
server to the slave servers. Unfortunately, most of the mechanisms that one might employ to accomplish thisreplication fall short in

191

Server Configuration

one way or another®. M any teams don't use Subversion's locking features at all, so this may be a nonissue for you. Sadly, for those
teams which do use locks, we have no recommendations on how to gracefully work around this shortcoming.

Caveats

Y our master/slave replication system should now be ready to use. A couple of words of warning are in order, however. Remember
that this replication isn't entirely robust in the face of computer or network crashes. For example, if one of the automated svnsync
commandsfailsto complete for some reason, the Slaveswill begin to fall behind. For example, your remote userswill seethat they've
committed revision 100, but then when they run svn update, their local server will tell them that revision 100 doesn't yet exist! Of
course, the problem will be automatically fixed the next time another commit happens and the subsequent svnsync is successful
—the sync will replicate all waiting revisions. But still, you may want to set up some sort of out-of-band monitoring to notice
synchronization failures and force svnsync to run when things go wrong.

Can We Set Up Replication with svnserve?

If you're using svnserve instead of Apache as your server, you can certainly configure your repository's hook scripts to invoke
svnsync as we've shown here, thereby causing automatic replication from master to slaves. Unfortunately, at the time of this
writing there is no way to make slave svnser ve servers automatically proxy write requests back to the master server. This means
your users would only be able to check out read-only working copies from the slave servers. Y ou'd have to configure your slave
serversto disallow write access completely. This might be useful for creating read-only “mirrors’ of popular open source projects,
but it's not a transparent proxying system.

Other Apache features

Several of the features aready provided by Apache in its role as a robust web server can be leveraged for increased functionality
or security in Subversion as well. The Subversion client is able to use SSL (the Secure Sockets Layer, discussed earlier). If your
Subversion client is built to support SSL, it can access your Apache server using ht t ps: // and enjoy a high-quality encrypted
network session.

Equally useful are other features of the Apache and Subversion relationship, such as the ability to specify a custom port (instead of
the default HTTP port 80) or avirtual domain name by which the Subversion repository should be accessed, or the ability to access
the repository through an HTTP proxy.

Finally, because mod_dav_svn is speaking a subset of the WebDAV/DeltaV protocol, it's possible to access the repository viathird-
party DAV clients. Most modern operating systems (Win32, OS X, and Linux) have the built-in ability to mount aDAV server asa
standard network “shared folder.” Thisis a complicated topic, but also wondrous when implemented. For details, read Appendix C,
WebDAYV and Autoversioning.

Note that there are a number of other small tweaks one can make to mod_dav_svn that are too obscure to mention in this chapter.
For acomplete list of al ht t pd. conf directivesthat mod_dav_svn responds to, see the section called “Directives’.

Path-Based Authorization

Both Apache and svnser ve are capable of granting (or denying) permissionsto users. Typically thisis done over the entire repository:
auser can read the repository (or not), and she can write to the repository (or not). It's also possible, however, to define finer-grained
access rules. One set of users may have permission to write to a certain directory in the repository, but not others; another directory
might not even be readable by al but afew special people. Asfilesare paths, too, it's even possibleto restrict accesson aper file basis.

Both servers use a common file format to describe these path-based access rules. In the case of Apache, one needs to load the
mod_authz_svn module and then add the Aut hzSVNAccessFi | e directive (withintheht t pd. conf file) pointing to your own

9http://su.Jbversi on.tigris.org/issues/show_bug.cgi71d=3457 tracks these problems.

192

http://subversion.tigris.org/issues/show_bug.cgi?id=3457

Server Configuration

accessrulesfile. (For afull explanation, see the section called “ Per-directory access control”.) If you're using svnserve, you need to
make the aut hz- db variable (within svnser ve. conf) point to your access rulesfile.

Do You Really Need Path-Based Access Control?

A lot of administrators setting up Subversion for the first time tend to jump into path-based access control without giving it alot
of thought. The administrator usually knows which teams of people are working on which projects, so it's easy to jump in and
grant certain teams access to certain directories and not others. It seems like a natural thing, and it appeases the administrator's
desire to maintain tight control of the repository.

Note, though, that there are often invisible (and visible!) costs associated with thisfeature. In the visible category, the server needs
to do alot more work to ensure that the user has the right to read or write each specific path; in certain situations, there's very
noticeable performance loss. In the invisible category, consider the culture you're creating. Most of the time, while certain users
shouldn't be committing changes to certain parts of the repository, that social contract doesn't need to be technologically enforced.
Teams can sometimes spontaneously collaborate with each other; someone may want to help someone else out by committing to
an area she doesn't normally work on. By preventing this sort of thing at the server level, you're setting up barriers to unexpected
collaboration. You're also creating a bunch of rules that need to be maintained as projects develop, new users are added, and so
on. It'sabunch of extrawork to maintain.

Remember that thisisaversion control system! Even if somebody accidentally commits a change to something she shouldn't, it's
easy to undo the change. And if auser commits to the wrong place with deliberate malice, it's a socia problem anyway, and that
the problem needs to be dealt with outside Subversion.

So, before you begin restricting users' access rights, ask yourself whether there's areal, honest need for this, or whether it's just
something that “sounds good” to an administrator. Decide whether it's worth sacrificing some server speed, and remember that
there's very little risk involved; it's bad to become dependent on technology as a crutch for social problems. 10

As an example to ponder, consider that the Subversion project itself has always had a notion of who is allowed to commit where,
but it's always been enforced socialy. Thisis a good model of community trust, especially for open source projects. Of course,
sometimes there are truly legitimate needs for path-based access control; within corporations, for example, certain types of data
really can be sensitive, and access needs to be genuinely restricted to small groups of people.

Once your server knows where to find your accessfile, it's time to define the rules.

The syntax of thefileisthe same familiar one used by svnser ve. conf and the runtime configuration files. Linesthat start with a
hash (#) areignored. In its simplest form, each section names a repository and path within it, as well as the authenticated usernames
are the option names within each section. The value of each option describes the user's level of access to the repository path: either
r (read-only) or r w(read/write). If the user is not mentioned at al, no accessis allowed.

To be more specific: the value of the section names is either of theform [r epos- name: pat h] or of theform [pat h] .

them to lower case internally before comparing them against the contents of your access file. Use lower case for the

Subversion treats repository names and pathsin a case-insensitive fashion for the purposes of access control, converting
Q contents of the section headers in your accessfile.

If you're using the SVNPar ent Pat h directive, it's important to specify the repository names in your sections. If you omit them,
a section such as [/ sone/ di r] will match the path / sone/ di r in every repository. If you're using the SVNPat h directive,
however, it's fine to only define paths in your sections—after all, there's only one repository.

[cal c:/branches/ cal ¢/ bug-142]
harry = rw

10A common theme in this book!

193

Server Configuration

sally =r

In thisfirst example, the user har ry has full read and write access on the/ br anches/ cal ¢/ bug- 142 directory in the cal ¢
repository, but the user sal | y has read-only access. Any other users are blocked from accessing this directory.

mod_dav_svn offersadirective, SYNReposNane, which allowsadministratorsto defineamore human-friendly name,
Q of sorts, for arepository:

<Location /svn/cal c>
SVNPat h /var/svn/cal c
SVNReposNane "Cal cul ator Application”

This allows mod_dav_svn to identify the repository by something other than merely its server directory basename
—cal ¢, in the previous example—when providing directory listings of repository content. Be aware, however, that
when consulting the access file for authorization rules, Subversion uses this repository basename for comparison, not
any configured human-friendly name.

Of course, permissions are inherited from parent to child directory. That means we can specify a subdirectory with a different access
policy for Sally:

[cal c:/branches/ cal ¢/ bug-142]
harry = rw
sally r

give sally wite access only to the "testing' subdir
[cal c:/branches/ cal ¢/ bug-142/testing]
sally = rw

Now Sally can write to thet est i ng subdirectory of the branch, but can still only read other parts. Harry, meanwhile, continues
to have complete read/write access to the whole branch.

It's also possible to explicitly deny permission to someone viainheritance rules, by setting the username variable to nothing:

[cal c:/branches/ cal c/ bug- 142]
harry = rw
sally r

[cal c:/branches/ cal c/ bug- 142/ secret]
harry =

Inthisexample, Harry hasread/write accesstotheentirebug- 142 tree, but hasabsolutely no accessat all tothesecr et subdirectory
within it.

then the parent of the path, then the parent of that, and so on. The net effect is that mentioning a specific path in the

The thing to remember is that the most specific path always matches first. The server tries to match the path itself, and
0} access file will always override any permissions inherited from parent directories.

By default, nobody has any access to the repository at all. That meansthat if you're starting with an empty file, you'll probably want
to give at least read permission to all users at the root of the repository. You can do this by using the asterisk variable (*), which
means “all users’:

194

Server Configuration

[/]
* = r

Thisisacommon setup; notice that no repository name is mentioned in the section name. This makes all repositories world-readable
to al users. Once all users have read access to the repositories, you can give explicit r w permission to certain users on specific
subdirectories within specific repositories.

The access file a so allows you to define whole groups of users, much like the Unix / et ¢/ gr oup file:

[groups]

cal c-devel opers = harry, sally, joe

pai nt - devel opers = frank, sally, jane
everyone = harry, sally, joe, frank, jane

Groups can be granted access control just like users. Distinguish them with an “at” (@ prefix:

[cal c:/projects/calc]
@al c-devel opers = rw

[pai nt:/projects/paint]

jane =r
@ai nt - devel opers = rw

Another important fact is that group permissions are not overridden by individual user permissions. Rather, the combination of all
matching permissionsis granted. In the prior example, Jane is amember of the pai nt - devel oper s group, which has read/write
access. Combined with the j ane = r rule, this till gives Jane read/write access. Permissions for group members can only be
extended beyond the permissionsthe group aready has. Restricting userswho are part of agroup to lessthan their group's permissions
isimpossible.

Groups can also be defined to contain other groups:

[groups]

cal c-devel opers = harry, sally, joe

pai nt -devel opers = frank, sally, jane

everyone = @al c-devel opers, @ai nt-devel opers

Subversion 1.5 brought several useful features to the access file syntax—username aliases, authentication class tokens, and a new
rule exclusion mechanism—all of which further simplify the maintenance of the accessfile. We'll describe first the username aliases
feature.

Some authentication systems expect and carry relatively short usernames of the sorts we've been describing here—harry,
sal |l y, j oe, and so on. But other authentication systems—such as those which use LDAP stores or SSL client certificates—
may carry much more complex usernames. For example, Harry's username in an LDAP-protected system might be CN=Har ol d
Hacker, OQU=Engi neer s, DC=r ed- bean, DC=com With usernames like that, the access file can become quite bloated with
long or obscure usernames that are easy to mistype. Fortunately, username aliases alow you to have to type the correct complex
username only once, in a statement which assignsto it amore easily digestable aias.

[al i ases]

harry = CN=Har ol d Hacker, OU=Engi neer s, DC=r ed- bean, DC=com
sally = CN=Sally Swatterbug, O=Engi neer s, DC=r ed- bean, DC=com
joe = CN=Cerald |I. Joseph, OQU=Engi neer s, DC=r ed- bean, DC=com

195

Server Configuration

Once you've defined a set of aliases, you can refer to the users elsewhere in the accessfile viatheir aliasesin al the same places you
could have instead used their actual usernames. Simply prepend an ampersand to the alias to distinguish it from aregular username:

[groups]

cal c-devel opers = &harry, &sally, & oe

pai nt - devel opers = & rank, &sally, & ane
everyone = @al c-devel opers, @ai nt-devel opers

Y ou might also choose to use aliases if your users usernames change frequently. Doing so allows you to need to update only the
aliases table when these username changes occur, instead of doing global-search-and-replace operations on the whole access file.

Subversion also supports some“magic” tokensfor hel ping you to make rule assignments based on the user's authentication class. One
such token is the $aut hent i cat ed token. Use this token where you would otherwise specify a username, alias, or group name
in your authorization rules to declare the permissions granted to any user who has authenticated with any username at all. Similarly
employed isthe $anonynous token, except that it matches everyone who has not authenticated with a username.

[cal endar: / proj ects/cal endar]
$anonynous = r
$aut henticated = rw

Finally, another handy bit of accessfile syntax magic isthe use of thetilde (~) character asan exclusion marker. In your authorization
rules, prefixing a username, alias, group name, or authentication class token with atilde character will cause Subversion to apply
the rule to users who do not match the rule. Though somewhat unnecessarily obfuscated, the following block is equivaent to the
onein the previous example:

[cal endar:/ proj ects/cal endar]
~$aut henticated = r
~$anonynous = rw

A less obvious example might be as follows:

[gr oups]

cal c-devel opers = &harry, &sally, & oe
cal c-owners = &hew ett, &packard

cal c = @al c-devel opers, @al c-owners

Any calc participant has read-wite access...
[cal c:/projects/calc]
@alc =rw

...but only allow the owners to make and nodify rel ease tags.
[cal c:/projects/cal c/tags]
~@al c-owners =r

All of the above examples use directories, because defining access rules on them is the most common case. But is similarly able to
restrict access on file paths, too.

[cal endar:/ proj ects/ cal endar/ manager . i cs]
harry = rw

196

Server Configuration

sally =r

Partial Readability and Checkouts

If you're using Apache as your Subversion server and have made certain subdirectories of your repository unreadable to certain
users, you need to be aware of a possible nonoptimal behavior with svn checkout.

When the client requests a checkout or update over HTTP, it makes a single server request and receives a single (often large)
server response. When the server receives the request, that is the only opportunity Apache has to demand user authentication.
This has some odd side effects. For example, if a certain subdirectory of the repository is readable only by user Sally, and user
Harry checks out a parent directory, his client will respond to the initial authentication challenge as Harry. Asthe server generates
the large response, there's no way it can resend an authentication challenge when it reaches the special subdirectory; thus the
subdirectory is skipped altogether, rather than asking the user to reauthenticate as Sally at the right moment. In asimilar way, if the
root of the repository is anonymously world-readable, the entire checkout will be done without authentication—again, skipping
the unreadable directory, rather than asking for authentication partway through.

High-level Logging

Both the Apache httpd and svnser ve Subversion servers provide support for high-level logging of Subversion operations. Configuring
each of the server options to provide this level of logging is done differently, of course, but the output from each is designed to
conform to a uniform syntax.

To enable high-level logging in svnserve, you need only use the - - | og- fi | e command-line option when starting the server,
passing as the value to the option the file to which svnserve should write its log output.
$ svnserve -d -r /path/to/repositories --log-file /var/log/svn.log

Enabling the same in Apache is a bit more involved, but is essentially an extension of Apache's stock log output configuration
mechanisms—see the section called “ Apache logging” for details.

The following is alist of Subversion action log messages produced by its high-level logging mechanism, followed by one or more
examples of the log message as it appears in the log output.

Checkout or export

checkout - or-export /path r62 depth=infinity

Commit

comrt harry r100
Diffs
diff /path r15:20 depth=infinity ignore-ancestry
diff /pathl@b5 /path2@0 depth=infinity ignore-ancestry

Fetch a directory

get-dir /trunk r17 text

197

Server Configuration

Fetch afile

get-file /path r20 props

Fetch afilerevision

get-file-revs /path r12: 15 incl ude- nerged-revisi ons

Fetch merge information

get-mergei nfo (/pathl /path2)

Lock

| ock /path steal

Log

l og (/pathl,/path2,/path3) r20:90 di scover-changed-paths revprops=()

Replay revisions (svnsync)

replay /path r19

Revision property change

change-rev-prop r50 propertynane

Revision property list

rev-proplist r34

Status

status /path r62 depth=infinity

Switch

switch /pathA /pathB@0 depth=infinity

Unlock

unl ock /path break

Update

198

Server Configuration

update /path r17 send-copyfrom args

As a convenience to administrators who wish to post-process their Subversion high-level logging output (perhaps for reporting
or analysis purposes), Subversion source code distributions provide a Python module (located at t ool s/ server - si de/
svn_server _| og_par se. py) which can be used to parse Subversion's log output.

Supporting Multiple Repository Access Methods

Y ou've seen how arepository can be accessed in many different ways. But isit possible—or safe—for your repository to be accessed
by multiple methods simultaneously? The answer is yes, provided you use a bit of foresight.

At any given time, these processes may require read and write access to your repository:

» Regular system users using a Subversion client (as themselves) to access the repository directly viafil e: // URLs

* Regular system users connecting to SSH-spawned private svnser ve processes (running as themselves), which accessthe repository
» An svnserve process—either adaemon or one launched by inetd—running as a particular fixed user

* An Apache httpd process, running as a particular fixed user

The most common problem administrators run into is repository ownership and permissions. Does every process (or user) in the
preceding list have the rights to read and write the repository's underlying data files? Assuming you have a Unix-like operating
system, a straightforward approach might be to place every potential repository user into anew svn group, and make the repository
wholly owned by that group. But even that's not enough, because a process may write to the database files using an unfriendly umask
—one that prevents access by other users.

So the next step beyond setting up a common group for repository usersisto force every repository-accessing process to use a sane
umask. For users accessing the repository directly, you can make the svn program into a wrapper script that first runsumask 002
and then runs the real svn client program. Y ou can write a similar wrapper script for the svnserve program, and add aunask 002
command to Apache's own startup script, apachect | . For example:

$ cat /usr/bin/svn
#!/ bi n/ sh

umask 002
fusr/bin/svn-real "$@

Another common problem is often encountered on Unix-like systems. If your repository is backed by Berkeley DB, for example,
it occasionally creates new log files to journa its actions. Even if the Berkeley DB repository is wholly owned by the svn group,
these newly created log files won't necessarily be owned by that same group, which then creates more permissions problems for your
users. A good workaround is to set the group SUID bit on the repository's db directory. This causes all newly created log files to
have the same group owner as the parent directory.

Once you've jumped through these hoops, your repository should be accessible by all the necessary processes. It may seem a bit
messy and complicated, but the problems of having multiple users sharing write access to common files are classic ones that are
not often elegantly solved.

Fortunately, most repository administrators will never need to have such a complex configuration. Users who wish to access
repositories that live on the same machine are not limited tousing f i | e: // access URLs—they can typically contact the Apache
HTTP server or svnserve using | ocal host for the server namein their htt p: // or svn:// URL. And maintaining multiple
server processes for your Subversion repositoriesis likely to be more of a headache than necessary. We recommend that you choose
asingle server that best meets your needs and stick with it!

199

Server Configuration

The svn+ssh:// Server Checklist

It can be quite tricky to get a bunch of users with existing SSH accounts to share a repository without permissions problems. |f
you're confused about all the things that you (as an administrator) need to do on a Unix-like system, here's a quick checklist that
resummarizes some of the topics discussed in this section:

 All of your SSH users need to be able to read and write to the repository, so put all the SSH usersinto a single group.
» Make the repository wholly owned by that group.
* Set the group permissions to read/write.

e Your users need to use a sane umask when accessing the repository, so make sure svnserve (/ usr/ bi n/ svnserve, or
wherever it livesin $PATH) is actually awrapper script that runsumask 002 and executes the real svnserve binary.

» Take similar measures when using svnlook and svhadmin. Either run them with a sane umask or wrap them as just described.

200

Chapter 7. Customizing Your Subversion
Experience

Version control can be acomplex subject, asmuch art as science, that offers myriad ways of getting stuff done. Throughout this book,
you've read of the various Subversion command-line client subcommands and the options that modify their behavior. In this chapter,
well look into still more ways to customize the way Subversion works for you—setting up the Subversion runtime configuration,
using external helper applications, Subversion's interaction with the operating system's configured locale, and so on.

Runtime Configuration Area

Subversion provides many optional behaviors that the user can control. Many of these options are of the kind that a user would wish
to apply to all Subversion operations. So, rather than forcing usersto remember command-line argumentsfor specifying these options
and to usethem for every operation they perform, Subversion uses configuration files, segregated into aSubversion configuration area.

The Subversion configuration area is a two-tiered hierarchy of option names and their values. Usually, this boils down to a special
directory that contains configuration files (thefirst tier), which arejust text filesin standard INI format where “ sections’ provide the
second tier. You can easily edit these files using your favorite text editor (such as Emacs or vi), and they contain directives read by
the client to determine which of several optional behaviors the user prefers.

Configuration Area Layout

The first time the svn command-line client is executed, it creates a per-user configuration area. On Unix-like systems, this area
appears as adirectory named . subver si on in the user's home directory. On Win32 systems, Subversion creates a folder named
Subver si on, typically insidethe Appl i cat i on Dat a areaof the user's profile directory (which, by theway, isusually ahidden
directory). However, on this platform, the exact location differs from system to system and is dictated by the Windows Registry.’
We will refer to the per-user configuration area using its Unix hame, . subver si on.

In addition to the per-user configuration area, Subversion also recognizes the existence of a system-wide configuration area. This
gives system administrators the ability to establish defaultsfor all users on agiven machine. Note that the system-wide configuration
area alone does not dictate mandatory policy—the settings in the per-user configuration area override those in the system-wide one,
and command-line arguments supplied to the svn program have the final word on behavior. On Unix-like platforms, the system-
wide configuration areais expected to be the/ et ¢/ subver si on directory; on Windows machines, it looks for a Subver si on
directory inside the common Appl i cat i on Dat a location (again, as specified by the Windows Registry). Unlike the per-user
case, the svn program does not attempt to create the system-wide configuration area.

The per-user configuration area currently contains three files—two configuration files (confi g and servers), and a
README. t xt file, which describes the INI format. At the time of their creation, the files contain default values for each of the
supported Subversion options, mostly commented out and grouped with textual descriptions about how the values for the key affect
Subversion's behavior. To change a certain behavior, you need only to load the appropriate configuration file into a text editor, and
to modify the desired option's value. If at any time you wish to have the default configuration settings restored, you can simply
remove (or rename) your configuration directory and then run some innocuous svn command, such assvn --versi on. A new
configuration directory with the default contents will be created.

Subversion also alows you to override individual configuration option values at the command line viathe - - conf i g- opti on
option, which is especially useful if you need to make a (very) temporary change in behavior. For more about this option's proper
usage, see the section called “svn Options”.

The per-user configuration area also contains a cache of authentication data. The aut h directory holds a set of subdirectories that
contain pieces of cached information used by Subversion's various supported authentication methods. This directory is created in
such away that only the user herself has permission to read its contents.

1The APPDATA environment variable pointsto the Appl i cati on Dat a area, so you can always refer to this folder as %APPDATA% Subver si on.

201

Customizing Y our Subversion Experience

Configuration and the Windows Registry

In addition to the usual INI-based configuration area, Subversion clients running on Windows platforms may also use the Windows
Registry to hold the configuration data. The option names and their values arethe same asintheINI files. The “file/section” hierarchy
is preserved as well, though addressed in a slightly different fashion—in this schema, files and sections are just levelsin the Registry
key tree.

Subversion looks for system-wide configuration values under the HKEY LOCAL MACHI NE\ Sof tware\ Tigris.org
\ Subver si on key. For example, the gl obal -i gnor es option, which isin the mi scel | any section of the confi g file,
would be found at HKEY LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ M scel | any\ gl obal -
i gnores. Per-user configuration values should be stored under HKEY CURRENT USER\ Software\Tigris.org
\ Subver si on.

Registry-based configuration options are parsed before their file-based counterparts, so they are overridden by values found in the
configuration files. In other words, Subversion looks for configuration information in the following locations on a Windows system;
lower-numbered |ocations take precedence over higher-numbered locations:

1. Command-line options

2. The per-user INI files

3. The per-user Registry values

4. The system-wide INI files

5. The system-wide Registry values

Also, the Windows Registry doesn't really support the notion of something being “ commented out.” However, Subversion will ignore
any option key whose name beginswith ahash (#) character. Thisallowsyou to effectively comment out a Subversion option without
deleting the entire key from the Registry, obviously simplifying the process of restoring that option.

The svn command-line client never attempts to write to the Windows Registry and will not attempt to create a default configuration
areathere. Y ou can create the keys you need using the REGEDI T program. Alternatively, you can create a. r eg file (such asthe
one in Example 7.1, “Sample registration entries (.reg) file”), and then double-click on that file's icon in the Explorer shell, which
will cause the data to be merged into your Registry.

Example 7.1. Sampleregistration entries (.reg) file

REGEDI T4
[HKEY_LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Ser ver s\ gr oups]

[HKEY_LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Ser ver s\ gl obal]
"#htt p-aut h-types"="basi c; di gest ; negoti ate"

"#htt p- conpressi on"="yes"

"#http-library"=""

"#htt p- proxy-exceptions"=""
"#htt p- proxy-host"=""

"#ht t p- pr oxy- passwor d”
"#htt p- proxy-port"=""

"#ht t p- pr oxy-user nane"
"#http-timeout"="0"

"#neon- debug- mask" =
"#ssl-authority-files"

202

Customizing Y our Subversion Experience

"#ssl-client-cert-file"=""
"#ssl-client-cert-password"=""

"#ssl - pkcs11- provi der"=""
"#ssl-trust-defaul t-ca"=""
"#store-auth-creds"="yes"

"#st or e- passwords”" ="yes"

"#st or e- pl ai nt ext - passwor ds" ="ask"
"#store-ssl-client-cert-pp"="yes"
"#store-ssl-client-cert-pp-plaintext"="ask"
"#user name" =""

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ aut h]
" #passwor d- st ores” ="w ndows- cr ypt oapi "

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ hel per s]
"#diff-cmd"=""

"#di ff3-cmd"=""

"#di f f 3- has- programarg"=""

"#edit or-cnmd" ="not epad”

"#mer ge-tool -cmd" =""

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ t unnel s]

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ nmi scel | any]
"#enabl e- aut o- props” ="no"

"#gl obal -ignores"="*.0 *.lo *.la *.al .libs *.s0o *.s0.[0-9]* *.a *.pyc *.pyo *.rej *~
#*# . #* .*.swp .DS _Store"

"#interactive-conflicts"="yes"

"#l og- encodi ng"=""

"#m ne-types-file"=""

"#no- unl ock" ="no"

"#preserved-conflict-file-exts"="doc ppt xls od?"

"#use-conmmit-tinmes"="no"

[HKEY_CURRENT _USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ aut o- pr ops]

Example 7.1, “ Sample registration entries (.reg) file” showsthe contentsof a. r eg file, which contains some of the most commonly
used configuration options and their default values. Note the presence of both system-wide (for network proxy-related options) and
per-user settings (editor programs and password storage, among others). Also note that all the options are effectively commented out.
Y ou need only to remove the hash (#) character from the beginning of the option names and set the values as you desire.

Configuration Options

In this section, we will discuss the specific runtime configuration options that Subversion currently supports.

Servers

Theser ver s file contains Subversion configuration options related to the network layers. There are two special sectionsin thisfile
—[groups] and[gl obal].The[gr oups] section isessentialy across-reference table. The keysin this section are the names
of other sections in the file; their values are globs—textual tokens that possibly contain wildcard characters—that are compared
against the hostnames of the machine to which Subversion requests are sent.

[gr oups]

203

Customizing Y our Subversion Experience

beani e- babi es = *.red-bean. com
col | abnet = svn. col | ab. net

[beani e- babi es]

[col | abnet]

When Subversion is used over a network, it attempts to match the name of the server it is trying to reach with a group name under
the[gr oups] section. If a match is made, Subversion then looks for a section in the ser ver s file whose name is the matched
group's name. From that section, it reads the actual network configuration settings.

The[gl obal] section containsthe settingsthat are meant for all of the servers not matched by one of the globsunder the[gr oups]
section. The options availablein this section are exactly the same asthose that are valid for the other server sectionsin thefile (except,
of course, the special [gr oups] section), and are as follows:

htt p- aut h-t ypes

Thisis asemicolon-delimited list of HTTP authentication types which the client will deem acceptable. Valid types are basi c,
di gest ,andnegot i at e, with the default behavior being acceptance of any these authentication types. A client which insists
on not transmitting authentication credentials in cleartext might, for example, be configured such that the value of this option
isdi gest ; negot i at e—omitting basi ¢ from the list. (Note that this setting is only honored by Subversion's Neon-based
HTTP provider module.)

htt p- conpr essi on

This specifies whether Subversion should attempt to compress network requests made to DAV -ready servers. The default value
isyes (though compression will occur only if that capability is compiled into the network layer). Set this to no to disable
compression, such as when debugging network transmissions.

http-library

Subversion provides apair of repository access modules that understand its WebDAV network protocol. The original one, which
shipped with Subversion 1.0, is| i bsvn_r a_neon (though back then it was called | i bsvn_r a_dav). Newer Subversion
versions also provide |l i bsvn_ra_ser f, which uses a different underlying implementation and aims to support some of the
newer HTTP concepts.

Atthispoint, | i bsvn_ra_serf istill considered experimental, though it appearsto work in the common cases quitewell. To
encourage experimentation, Subversion provides the ht t p- | i br ar y runtime configuration option to allow users to specify
(generally, or in a per-server-group fashion) which WebDAV access module they'd prefer to use—neon or ser f .

htt p- pr oxy-excepti ons

This specifies a comma-separated list of patterns for repository hostnames that should be accessed directly, without using the
proxy machine. The pattern syntax is the same as is used in the Unix shell for filenames. A repository hostname matching any
of these patterns will not be proxied.

ht t p- pr oxy- host

This specifies the hostname of the proxy computer through which your HTTP-based Subversion requests must pass. It defaults
to an empty value, which means that Subversion will not attempt to route HTTP requests through a proxy computer, and will
instead attempt to contact the destination machine directly.

ht t p- pr oxy- password

This specifies the password to supply to the proxy machine. It defaults to an empty value.

204

Customizing Y our Subversion Experience

ht t p- pr oxy- port

This specifies the port number on the proxy host to use. It defaults to an empty value.
ht t p- proxy- user nanme

This specifies the username to supply to the proxy machine. It defaults to an empty value.
http-tinmeout

This specifies the amount of time, in seconds, to wait for a server response. If you experience problems with a slow network
connection causing Subversion operationsto time out, you should increase the value of this option. The default valueis 0, which
instructs the underlying HTTP library, Neon, to use its default timeout setting.

neon- debug- mask

Thisisan integer mask that the underlying HTTP library, Neon, uses for choosing what type of debugging output to yield. The
default value is 0, which will silence all debugging output. For more information about how Subversion makes use of Neon,
see Chapter 8, Embedding Subversion.

ssl-authority-files

Thisisasemicolon-delimited list of pathsto files containing certificates of the certificate authorities (or CAs) that are accepted
by the Subversion client when accessing the repository over HTTPS.

ssl-client-cert-file
If ahost (or set of hosts) requiresan SSL client certificate, you'll normally be prompted for a path to your certificate. By setting
thisvariableto that same path, Subversion will be ableto find your client certificate automatically without prompting you. There's
no standard place to store your certificate on disk; Subversion will grab it from any path you specify.

ssl-client-cert-password

If your SSL client certificate file is encrypted by a passphrase, Subversion will prompt you for the passphrase whenever the
certificate is used. If you find this annoying (and don't mind storing the password intheser ver s file), you can set thisvariable
to the certificate's passphrase. Y ou won't be prompted anymore.

ssl - pkcs11- provi der

The value of this option is the name of the PK CS#11 provider from which an SSL client certificate will be drawn (if the server
asks for one). This setting is only honored by Subversion's Neon-based HTTP provider module.

ssl-trust-default-ca
Set thisvariableto yes if you want Subversion to automatically trust the set of default CAs that ship with OpenSSL.
st ore- aut h-cr eds

This setting is the same as st or e- passwor ds, except that it enables or disables on-disk caching of all authentication
information: usernames, passwords, server certificates, and any other types of cacheable credentials.

st or e- passwor ds

This instructs Subversion to cache, or not to cache, passwords that are supplied by the user in response to server authentication
challenges. The default valueisyes. Set thisto no to disable this on-disk password caching. Y ou can override this option for
a single instance of the svn command using the - - no- aut h- cache command-line parameter (for those subcommands that
support it). For more information regarding that, see the section called “ Caching credentials’. Note that regardliess of how this

205

Customizing Y our Subversion Experience

option is configured, Subversion will not store passwords in plaintext unless the st or e- pl ai nt ext - passwor ds option
isalsosettoyes.

st or e- pl ai nt ext - passwor ds

This variable is only important on UNIX-like systems. It controls what the Subversion client does in case the password for the
current authentication realm can only be cached on disk in unencrypted form, inthe ~/ . subver si on/ aut h/ caching area.
You can set it toyes or no to enable or disable caching of passwords in unencrypted form, respectively. The default setting is
ask, which causes the Subversion client to ask you each time a new password is about to be added to the ~/ . subver si on/
aut h/ caching area.

store-ssl-client-cert-pp

This option controls whether Subversion will cache SSL client certificate passphrases provided by the user. Its value defaults
toyes. Set thisto no to disable this passphrase caching.

store-ssl-client-cert-pp-plaintext

This option controls whether Subversion, when attempting to cache an SSL client certificate passphrase, will be allowed to do
so using its on-disk plaintext storage mechanism. The default value of this option isask, which causes the Subversion client to
ask you each time a new client certificate passphrase is about to be added to the ~/ . subver si on/ aut h/ caching area. Set
this option's valueto yes or no to indicate your preference and avoid related prompts.

Config

Theconf i g file containsthe rest of the currently available Subversion runtime options—those not related to networking. There are
only afew optionsin use as of thiswriting, but they are again grouped into sections in expectation of future additions.

The[aut h] section contains settings related to Subversion's authentication and authorization against the repository. It contains the
following:

passwor d- st ores

This comma-delimited list specifies which (if any) system-provided password stores Subversion should attempt to use when
saving and retrieving cached authentication credentials, and in what order Subversion should prefer them. The default value is
gnone- keyring, kwallet, keychain, w ndows-crypto-api,representingthe GNOME Keyring, KDE Wallet,
Mac OS X Keychain, and Microsoft Windows cryptography API, respectively. Listed stores which are not available on the
system are ignored.

st or e- passwor ds

This option has been deprecated from the confi g file. It now lives as a per-server configuration item in the servers
configuration area. See the section called “ Servers’ for details.

store-aut h-creds

This option has been deprecated from the confi g file. It now lives as a per-server configuration item in the servers
configuration area. See the section called “ Servers’ for details.

The[hel per s] section controls which external applications Subversion uses to accomplish its tasks. Valid optionsin this section
are:

diff-cnd

This specifies the absolute path of a differencing program, used when Subversion generates “diff” output (such as when using
the svn diff command). By default, Subversion uses an internal differencing library—setting this option will causeit to perform

206

Customizing Y our Subversion Experience

this task using an external program. See the section called “Using External Differencing and Merge Tools’ for more details on
using such programs.

diff3-cmd

This specifies the absolute path of athree-way differencing program. Subversion uses this program to merge changes made by
the user with those received from the repository. By default, Subversion uses an internal differencing library—setting this option
will cause it to perform this task using an external program. See the section called “Using External Differencing and Merge
Tools’ for more details on using such programs.

di f f 3- has-programarg

Thisflag should be setto t r ue if the program specified by the di f f 3- crrd option acceptsa- - di f f - pr ogr amcommand-
line parameter.

editor-cnd

This specifies the program Subversion will use to query the user for certain types of textual metadata or when interactively
resolving conflicts. Seethe section called “ Using External Editors” for more detailson using external text editorswith Subversion.

mer ge-t ool -cnd

This specifies the program that Subversion will use to perform three-way merge operations on your versioned files. See the
section called “Using External Differencing and Merge Tools’ for more details on using such programs.

The[t unnel s] section alowsyou to define new tunnel schemesfor use with svnserveandsvn: // client connections. For more
details, see the section called “ Tunneling over SSH”.

Them scel | any section iswhere everything that doesn't belong el sewhere winds up.2 In this section, you can find:
enabl e- aut o- pr ops

This instructs Subversion to automatically set properties on newly added or imported files. The default value is no, so set this
toyes to enablethisfeature. The[aut o- pr ops] section of thisfile specifies which properties are to be set on which files.

gl obal -i gnores

When running the svn status command, Subversion lists unversioned files and directories along with the versioned ones,
annotating them with a ? character (see the section called “ See an overview of your changes’). Sometimes it can be annoying
to see uninteresting, unversioned items—for example, object filesthat result from a program's compilation—in this display. The
gl obal - i gnor es optionisalist of whitespace-delimited globsthat describe the names of filesand directoriesthat Subversion
should not display unlessthey are versioned. The default valueis*. o0 *.1o *.la *.al .libs *.so *.s0.[0-9]*
*.a *.pyc *.pyo *.rej *~ #*# . #* . * swp .DS Store.

As well as svn status, the svn add and svn import commands also ignore files that match the list when they are scanning a
directory. Y ou can override this behavior for a single instance of any of these commands by explicitly specifying the filename,
or by using the - - no- i gnor e command-line flag.

For information on finer-grained control of ignored items, see the section called “Ignoring Unversioned ltems”.
interactive-conflicts

ThisisaBoolean option that specifies whether Subversion should try to resolve conflictsinteractively. If itsvalueisyes (which
is the default value), Subversion will prompt the user for how to handle conflicts in the manner demonstrated in the section
called “Resolve Any Conflicts’. Otherwise, it will simply flag the conflict and continue its operation, postponing resolution to
alater time.

2Anyone for potluck dinner?

207

Customizing Y our Subversion Experience

| og- encodi ng

Thisvariable setsthe default character set encoding for commit log messages. It's a permanent form of the - - encodi ng option
(see the section called “svn Options’). The Subversion repository stores log messages in UTF-8 and assumes that your log
message iswritten using your operating system's native locale. Y ou should specify adifferent encoding if your commit messages
are written in any other encoding.

m ne-types-file

This option, new to Subversion 1.5, specifies the path of a MIME types mapping file, such asthe ni ne. t ypes file provided
by the Apache HTTP Server. Subversion uses this file to assign MIME types to newly added or imported files. See the section
called “ Automatic Property Setting” and the section called “File Content Type” for more about Subversion's detection and use
of file content types.

no- unl ock

This Boolean option corresponds to svn commit's - - no- unl ock option, which tells Subversion not to release locks on files
you've just committed. If this runtime option is set to yes, Subversion will never release locks automatically, leaving you to
run svn unlock explicitly. It defaultsto no.

preserved-conflict-file-exts

The value of this option is a space-delimited list of file extensions that Subversion should preserve when generating conflict
filenames. By default, the list is empty. This option is new to Subversion 1.5.

When Subversion detects conflicting file content changes, it defers resolution of those conflicts to the user. To assist in the
resolution, Subversion keeps pristine copies of the various competing versions of the file in the working copy. By default, those
conflict files have names constructed by appending to the original filename a custom extension such as. m ne or . REV (where
REV is a revision number). A mild annoyance with this naming scheme is that on operating systems where a file's extension
determines the default application used to open and edit that file, appending a custom extension prevents the file from being
easily opened by its native application. For example, if the file Rel easeNot es. pdf was conflicted, the conflict files might
be named Rel easeNot es. pdf . m ne or Rel easeNot es. pdf . r 4231. While your system might be configured to use
Adobe's Acrobat Reader to open fileswhose extensions are . pdf , there probably isn't an application configured on your system
to open al fileswhose extensionsare . r 4231.

You can fix this annoyance by using this configuration option, though. For files with one of the specified extensions,
Subversion will append to the conflict file names the custom extension just as before, but then aso reappend the file's
original extension. Using the previous example, and assuming that pdf is one of the extensions configured in this list thereof,
the conflict files generated for Rel easeNot es. pdf would instead be named Rel easeNot es. pdf. m ne. pdf and
Rel easeNot es. pdf . r 4231. pdf . Becauseeachfileendsin. pdf , thecorrect default application will be used to view them.

use-commit-tines

Normally your working copy files have timestamps that reflect the last time they were touched by any process, whether your
own editor or some svn subcommand. Thisis generally convenient for people devel oping software, because build systems often
look at timestamps as away of deciding which files need to be recompiled.

In other situations, however, it's sometimes nice for the working copy filesto have timestamps that reflect the last time they were
changed in the repository. The svn export command always places these “last-commit timestamps® on trees that it produces.
By setting this config variable to yes, the svn checkout, svn update, svn switch, and svn revert commands will also set last-
commit timestamps on files that they touch.

The [aut o- pr ops] section controls the Subversion client's ability to automatically set properties on files when they are added
or imported. It contains any number of key-value pairs in the format PATTERN = PROPNAME=VALUE[; PROPNANVE=VALUE
...],where PATTERN is afile pattern that matches one or more filenames and the rest of the line is a semicolon-delimited set of
property assignments. Multiple matches on a file will result in multiple propsets for that file; however, there is no guarantee that

208

Customizing Y our Subversion Experience

auto-props will be applied in the order in which they are listed in the config file, so you can't have one rule “override” another. Y ou
can find several examples of auto-propsusageintheconfi g file. Lastly, don't forget to set enabl e- aut o- pr ops toyes inthe
m scel | any section if you want to enable auto-props.

Localization

Localization is the act of making programs behave in a region-specific way. When a program formats numbers or dates in a way
specific to your part of the world or prints messages (or accepts input) in your native language, the program is said to be localized.
This section describes steps Subversion has made toward localization.

Understanding Locales

Most modern operating systems have a notion of the “ current locale’—that is, the region or country whose localization conventions
are honored. These conventions—typically chosen by some runtime configuration mechanism on the computer—affect the way in
which programs present data to the user, as well as the way in which they accept user input.

On most Unix-like systems, you can check the values of the locale-related runtime configuration options by running the locale
command:

$ locale

LANG=
LC_COLLATE="C"
LC CTYPE="C"
LC_MESSAGES="C"
LC_MONETARY="C"
LC_NUVERI C="C"

LC_TI ME=" C"
LC ALL="C"
$

The output is alist of locale-related environment variables and their current values. In this example, the variables are all set to the
default Clocale, but users can set these variables to specific country/language code combinations. For example, if one were to set the
LC _TI MEvariabletof r _CA, programswould know to present time and date information formatted according to a French-speaking
Canadian's expectations. And if one were to set the LC_MESSAGES variable to zh_TW programs would know to present human-
readable messages in Traditional Chinese. Setting the LC_ALL variable has the effect of changing every locale variable to the same
value. The value of LANGis used as adefault value for any locale variable that is unset. To seethelist of available locales on a Unix
system, run the command | ocal e - a.

On Windows, locale configuration is done via the “Regional and Language Options’ control panel item. There you can view and
select the values of individual settings from the available locales, and even customize (at a sickening level of detail) several of the
display formatting conventions.

Subversion's Use of Locales

The Subversion client, svn, honors the current locale configuration in two ways. First, it notices the value of the LC_MESSAGES
variable and attempts to print all messages in the specified language. For example:

$ export LC MESSAGES=de DE

$ svn hel p cat

cat: G bt den Inhalt der angegebenen Dateien oder URLs aus.
Aufruf: cat ZIEL[@REV]...

209

Customizing Y our Subversion Experience

This behavior works identically on both Unix and Windows systems. Note, though, that while your operating system might have
support for a certain locale, the Subversion client still may not be able to speak the particular language. In order to produce localized
messages, human volunteers must provide translations for each language. Thetrandl ations are written using the GNU gettext package,
which results in translation modules that end with the . o filename extension. For example, the German trandation file is named
de. no. These trandlation files are installed somewhere on your system. On Unix, they typically livein/ usr/ shar e/ | ocal e/,
while on Windows they're often found in the shar e\ | ocal e\ folder in Subversion'sinstallation area. Once installed, amoduleis
named after the program for which it provides trand ations. For example, the de. no file may ultimately end up installed as/ usr /

shar e/ | ocal e/ de/ LC_MESSAGES/ subver si on. no. By browsing theinstalled . no files, you can see which languages the
Subversion client is able to speak.

The second way in which the locale is honored involves how svn interprets your input. The repository stores al paths, filenames,
and log messages in Unicode, encoded as UTF-8. In that sense, the repository isinternationalized—that is, the repository is ready to
accept input in any human language. This means, however, that the Subversion client isresponsible for sending only UTF-8 filenames
and log messages into the repository. To do this, it must convert the data from the native locale into UTF-8.

For example, supposeyou createafilenamed caf f €. t xt , and then when committing thefile, you write thelog message as“ Adesso
il caffé épiu forte.” Both the filename and the log message contain non-ASCII characters, but because your localeissettoit | T,
the Subversion client knows to interpret them as Italian. It uses an Italian character set to convert the data to UTF-8 before sending
it off to the repository.

Notethat whilethe repository demands UTF-8 filenames and |og messages, it does not pay attention to file contents. Subversion treats
file contents as opaque strings of bytes, and neither client nor server makes an attempt to understand the character set or encoding
of the contents.

Character Set Conversion Errors

While using Subversion, you might get hit with an error related to character set conversions:

svn: Can't convert string fromnative encoding to ' UTF-8'":

svn: Can't convert string from'UTF-8 to native encoding:

Errors such as this typically occur when the Subversion client has received a UTF-8 string from the repository, but not all of the
characters in that string can be represented using the encoding of the current locale. For example, if your localeis en_US but a
collaborator has committed a Japanese filename, you're likely to see this error when you receive the file during an svn update.

The solution is either to set your locale to something that can represent the incoming UTF-8 data, or to change the filename or
log message in the repository. (And don't forget to slap your collaborator's hand—projects should decide on common languages
ahead of time so that all participants are using the same locale.)

Using External Editors

The most obvious way to get data into Subversion is through the addition of files to version control, committing changes to those
files, and so on. But other pieces of information besides merely versioned file data live in your Subversion repository. Some of these
bits of information—commit log messages, lock comments, and some property values—tend to be textual in nature and are provided
explicitly by users. Most of this information can be provided to the Subversion command-line client using the - - mnessage (- n)
and--fil e (- F) options with the appropriate subcommands.

Each of these options has its pros and cons. For example, when performing a commit, - - fi | e (- F) works well if you've already
prepared atext filethat holdsyour commit log message. If you didn't, though, you canuse- - nessage (- m to providealog message

210

Customizing Y our Subversion Experience

on the command line. Unfortunately, it can be tricky to compose anything more than a simple one-line message on the command
line. Users want more flexibility—multiline, free-form log message editing on demand.

Subversion supportsthis by allowing you to specify an external text editor that it will launch as necessary to give you amore powerful
input mechanism for this textual metadata. There are several waysto tell Subversion which editor you'd like use. Subversion checks
the following things, in the order specified, when it wants to launch such an editor:

1. - - edi t or - cnd command-line option

2. SVN_EDI TOR environment variable

3. edi t or - cnd runtime configuration option

4. VI SUAL environment variable

5. EDI TOR environment variable

6. Possibly, afallback value built into the Subversion libraries (not present in the official builds)

The value of any of these options or variables is the beginning of a command line to be executed by the shell. Subversion appends
to that command line a space and the pathname of a temporary file to be edited. So, to be used with Subversion, the configured or
specified editor needs to support an invocation in which its last command-line parameter is afile to be edited, and it should be able
to save thefilein place and return a zero exit code to indicate success.

As noted, external editors can be used to provide commit log messages to any of the committing subcommands (such as svn commit
or import, svn mkdir or delete when provided a URL target, etc.), and Subversion will try to launch the editor automatically if you
don't specify either of the- - message (-m or--fil e (- F) options. The svn propedit command is built almost entirely around
the use of an external editor. And beginning in version 1.5, Subversion will aso use the configured external text editor when the
user asksit to launch an editor during interactive conflict resolution. Oddly, there doesn't appear to be a way to use external editors
to interactively provide lock comments.

Using External Differencing and Merge Tools

The interface between Subversion and external two- and three-way differencing tools harkens back to a time when Subversion's
only contextual differencing capabilities were built around invocations of the GNU diffutils toolchain, specifically the diff and diff3
utilities. To get the kind of behavior Subversion needed, it called these utilities with more than a handful of options and parameters,
most of which were quite specific to the utilities. Some time later, Subversion grew its own internal differencing library, and as a
failover mechanism, the- - di f f - cnd and - - di f f 3- cnd options were added to the Subversion command-line client so that users
could more easily indicate that they preferred to use the GNU diff and diff3 utilities instead of the newfangled internal diff library. If
those options were used, Subversion would simply ignore the internal diff library, and fall back to running those external programs,
lengthy argument lists and all. And that's where things remain today.

It didn't take long for folks to realize that having such easy configuration mechanisms for specifying that Subversion should use the
external GNU diff and diff3 utilities located at a particular place on the system could be applied toward the use of other differencing
tools, too. After all, Subversion didn't actually verify that the things it was being told to run were members of the GNU diffutils
toolchain. But the only configurable aspect of using those external toolsistheir location on the system—not the option set, parameter
order, and so on. Subversion continues to throw all those GNU utility options at your external diff tool regardless of whether that
program can understand those options. And that's where things get unintuitive for most users.

entirely by Subversion and is affected by, among other things, whether the files being operated on are human-readable
asdetermined by their svn: m nme-t ype property. Thismeans, for example, that even if you had the niftiest Microsoft
Word-aware differencing or merging tool in the universe, it would never be invoked by Subversion as long as your
versioned Word documents had a configured MIME type that denoted that they were not human-readable (such as
appl i cat i on/ nswor d). For more about MIME type settings, see the section called “File Content Type’

: The decision on when to fire off a contextual two- or three-way diff as part of alarger Subversion operation is made

211

Customizing Y our Subversion Experience

Much later, Subversion 1.5 introduced interactive resolution of conflicts (described in the section called “ Resolve Any Conflicts’).
Oneof the optionsthat thisfeature providesto usersisthe ability to interactively launch athird-party mergetool. If thisactionistaken,
Subversion will check to see if the user has specified such atool for use in this way. Subversion will first check the SYN_MERGE
environment variablefor the name of an external mergetool. If that variableisnot set, it will look for the sameinformationin thevalue
of themrer ge- t ool - cnd runtime configuration option. Upon finding a configured external merge tool, it will invoke that tool.

separate-but-overlapping file changes live in harmony), Subversion exercises each of these options at different times
and for different reasons. The internal three-way differencing engine and its optional external replacement are used
when interaction with the user is not expected. In fact, significant delay introduced by such atool can actually result
in the failure of some time-sensitive Subversion operations. It's the external merge tool that is intended to be invoked
interactively.

: While the general purposes of the three-way differencing and merge tools are roughly the same (finding away to make

Now, whiletheinterface between Subversion and an external mergetool issignificantly less convol uted than that between Subversion
and the diff and diff3 tools, the likelihood of finding such atool whose calling conventions exactly match what Subversion expects
isdtill quitelow. The key to using external differencing and merge tools with Subversion isto use wrapper scripts, which convert the
input from Subversion into something that your specific differencing tool can understand, and then convert the output of your tool
back into aformat that Subversion expects. The following sections cover the specifics of those expectations.

External diff

Subversion calls external diff programs with parameters suitable for the GNU diff utility, and expects only that the external program
will return with a successful error code per the GNU diff definition thereof. For most aternative diff programs, only the sixth
and seventh arguments—the paths of the files that represent the left and right sides of the diff, respectively—are of interest. Note
that Subversion runs the diff program once per modified file covered by the Subversion operation, so if your program runs in an
asynchronous fashion (or is“backgrounded”), you might have several instances of it all running simultaneously. Finally, Subversion
expects that your program return an error code of 1 if your program detected differences, or O if it did not—any other error code
is considered a fatal error.®

Example 7.2, “diffwrap.py” and Example 7.3, “diffwrap.bat” aretemplatesfor external diff tool wrappersin the Python and Windows
batch scripting languages, respectively.

Example 7.2. diffwrap.py

#!/ usr/ bin/env python

i mport sys
i mport os

Configure your favorite diff program here.
DIFF = "/usr/local/bin/ny-diff-tool™"

Subversion provides the paths we need as the | ast two paraneters.
LEFT = sys.argv|[-2]
RI GHT = sys.argv[-1]

Call the diff command (change the following line to make sense for
your diff program.

cmd = [DIFF, '--left', LEFT, '--right', Rl GHT]

os. execv(cnd[0], cnd)

Return an errorcode of O if no differences were detected, 1 if sone were.

3The GNU diff manual page putsit thisway: “An exit status of 0 means no differences were found, 1 means some differences were found, and 2 means trouble.”

212

Customizing Y our Subversion Experience

Any other errorcode will be treated as fatal.

Example 7.3. diffwrap.bat

@ECHO OFF

REM Configure your favorite diff program here.
SET DI FF="C:\ Program Fi |l es\ Funky Stuff\My D ff Tool . exe"

REM Subver si on provides the paths we need as the [ast two paraneters.
REM These are paraneters 6 and 7 (unless you use svn diff -x, in

REM whi ch case, all bets are off).

SET LEFT=%%

SET Rl GHT=%

REM Cal |l the diff conmand (change the following line to nake sense for
REM your diff progranj.
9Ol FF% - -1 eft YAEFT% --right YR GHT%

REM Return an errorcode of O if no differences were detected, 1 if sone were.
REM Any ot her errorcode will be treated as fatal.

External diff3

Subversion invokes three-way differencing programs to perform non-interactive merges. When configured to use an external three-
way differencing program, it executes that program with parameters suitable for the GNU diff3 utility, expecting that the external
program will return with a successful error code and that the full file contents that result from the completed merge operation are
printed on the standard output stream (so that Subversion can redirect them into the appropriate version-controlled file). For most
aternative merge programs, only the ninth, tenth, and eleventh arguments, the paths of the files which represent the “mine”, “older”,
and “yours” inputs, respectively, are of interest. Note that because Subversion depends on the output of your merge program, your
wrapper script must not exit before that output has been delivered to Subversion. When it finally does exit, it should return an error

codeof Qif themergewas successful, or 1if unresolved conflictsremain in the output—any other error codeisconsidered afatal error.

Example 7.4, “diff3wrap.py” and Example 7.5, “diff3wrap.bat” are templates for external three-way differencing tool wrappersin
the Python and Windows batch scripting languages, respectively.

Example 7.4. diff3wrap.py
#!/ usr/ bin/env python

i mport sys

i mport os

Configure your favorite three-way diff program here.
DI FF3 = "/usr/local /bin/mnmy-diff3-tool"

Subversion provides the paths we need as the | ast three paraneters.

M NE = sys.argv|-3]
OLDER = sys. argv[-2]
YOURS = sys. argv[-1]

Call the three-way diff command (change the following line to nmake
sense for your three-way diff program.

213

Customizing Y our Subversion Experience

cnd = [DIFF3, '--older', OLDER, '--mne', MNE, '--yours', YOURS]
os. execv(cnd[0], cnd)

After performng the nerge, this script needs to print the contents
of the merged file to stdout. Do that in whatever way you see fit.
Return an errorcode of 0 on successful merge, 1 if unresolved conflicts
remain in the result. Any other errorcode will be treated as fatal.

Example 7.5. diff3wrap.bat

@ECHO OFF

REM Configure your favorite three-way di ff program here.
SET DI FF3="C:\ Program Fi | es\ Funky Stuff\My Diff3 Tool . exe"

REM Subver si on provides the paths we need as the | ast three paraneters.
REM These are paranmeters 9, 10, and 11. But we have access to only
REM ni ne paraneters at a time, so we shift our nine-paraneter w ndow
REM twi ce to let us get to what we need.

SH FT

SH FT

SET M NE=%/

SET OLDER=%8

SET YOURS=%9

REM Call the three-way diff command (change the followi ng Iine to make
REM sense for your three-way diff progranj.
9%l FF3% - - ol der %0LDER% - - mi ne %M NE% - - your s %/OURS%

REM After performing the nerge, this script needs to print the contents
REM of the nerged file to stdout. Do that in whatever way you see fit.
REM Return an errorcode of 0 on successful merge, 1 if unresolved conflicts
REM remain in the result. Any other errorcode will be treated as fatal.

External merge

Subversion optionally invokes an external mergetool as part of its support for interactive conflict resolution. It provides as arguments
to the merge tool the following: the path of the unmodified base file, the path of the “theirs’ file (which contains upstream changes),
the path of the “mine” file (which contains local modifications), the path of the file into which the final resolved contents should be
stored by the merge tool, and the working copy path of the conflicted file (relative to the original target of the merge operation). The
merge tool is expected to return an error code of 0 to indicate success, or 1 to indicate failure.

Example 7.6, “mergewrap.py” and Example 7.7, “mergewrap.bat” are templates for external merge tool wrappersin the Python and
Windows batch scripting languages, respectively.

Example 7.6. mergewrap.py
#!/ usr/ bin/env python

i mport sys

i mport os

Configure your favorite nerge program here.

214

Customizing Y our Subversion Experience

MERGE = "/usr/| ocal / bin/ nmy-merge-tool"

CGet the paths provided by Subversion.

BASE = sys.argv[1]
THEI RS = sys. argv[2]
M NE = sys.argv[3]
MERGED = sys. argv] 4]
WCPATH = sys. argv[5]

Call the nmerge command (change the following line to nake sense for

your merge progranj.

cnd = [MERGE, '--base', BASE, '--nmine', MNE '--theirs', THEIRS,
'--outfile', MERCGED]

os. execv(cnd[0], cnd)

Return an errorcode of O if the conflict was resol ved; 1 otherw se.
Any other errorcode will be treated as fatal.

Example 7.7. mer gewr ap.bat

@CHO OFF

REM Confi gure your favorite merge program here.
SET MERGE="C.\ Program Fil es\ Funky Stuff\M/ Merge Tool . exe"

REM Get the paths provided by Subversion.
SET BASE=%

SET THEI RS=%2

SET M NE=98

SET MERGED=%!

SET WCPATH=%%

REM Cal | the nerge command (change the following line to make sense for
REM your nerge progranj.
WERGEY - - base YBASE% --mine %M NE% - -theirs %HEI RS% --outfil e %ERGEDY%

REM Return an errorcode of O if the conflict was resolved; 1 otherw se.
REM Any other errorcode will be treated as fatal.

Summary

Sometimes there's a single right way to do things, sometimes there are many. Subversion's developers understand that while the
majority of its exact behaviors are acceptable to most of its users, there are some corners of its functionality where such a universally
pleasing approach doesn't exist. In those places, Subversion offers users the opportunity to tell it how they want it to behave.

In this chapter, we explored Subversion's runtime configuration system and other mechanisms by which users can control those
configurable behaviors. If you are a developer, though, the next chapter will take you one step further. It describes how you can
further customize your Subversion experience by writing your own software against Subversion's libraries.

215

Chapter 8. Embedding Subversion

Subversion has a modular design: it's implemented as a collection of libraries written in C. Each library has a well-defined purpose
and application programming interface (API), and that interface is available not only for Subversion itself to use, but for any software
that wishesto embed or otherwise programmatically control Subversion. Additionally, Subversion's API isavailable not only to other
C programs, but also to programs written in higher-level languages such as Python, Perl, Java, and Ruby.

This chapter is for those who wish to interact with Subversion through its public API or its various language bindings. If you wish
to write robust wrapper scripts around Subversion functionality to simplify your own life, are trying to develop more complex
integrations between Subversion and other pieces of software, or just have an interest in Subversion's various library modules and
what they offer, this chapter isfor you. If, however, you don't foresee yourself participating with Subversion at such alevel, feel free
to skip this chapter with the confidence that your experience as a Subversion user will not be affected.

Layered Library Design

Each of Subversion's core libraries can be said to exist in one of three main layers—the Repository layer, the Repository Access (RA)
layer, or the Client layer (see Figure 1, “ Subversion's architecture” in the Preface). We will examine these layers shortly, but first,
let's briefly summarize Subversion's various libraries. For the sake of consistency, we will refer to the libraries by their extensionless
Unix library names (1 i bsvn_f s, i bsvn_wc, nod_dav_svn, etc.).

libsvn_client

Primary interface for client programs
libsvn delta

Tree and byte-stream differencing routines
libsvn_diff

Contextual differencing and merging routines
libsvn_fs

Filesystem commons and module loader
libsvn_fs base

The Berkeley DB filesystem backend
libsvn_fs fs

The native filesystem (FSFS) backend
libsvn_ra

Repository Access commons and module loader
libsvn _ra local

Thelocal Repository Access module
libsvn_ra neon

The WebDAV Repository Access module

216

Embedding Subversion

libsvn_ra_serf

Another (experimental) WebDAV Repository Access module
libsvn_ra svn

The custom protocol Repository Access module
libsvn_repos

Repository interface
libsvn_subr

Miscellaneous hel pful subroutines
libsvn_wc

The working copy management library
mod_authz_svn

Apache authorization module for Subversion repositories access via WebDAV
mod_dav_svn

Apache module for mapping WebDAV operations to Subversion ones
The fact that the word “miscellaneous’ appears only once in the previous list is a good sign. The Subversion development team is
serious about making sure that functionality livesin theright layer and libraries. Perhapsthe greatest advantage of the modular design
isitslack of complexity from a developer's point of view. As a developer, you can quickly formulate that kind of “big picture” that
allows you to pinpoint the location of certain pieces of functionality with relative ease.
Another benefit of modularity is the ability to replace a given module with a whole new library that implements the same API
without affecting the rest of the code base. In some sense, this happens within Subversion aready. Thel i bsvn_ra | ocal ,
i bsvn_ra_neon,libsvn_ra_serf,andl i bsvn_ra_svn librarieseachimplement the sameinterface, all working as plug-
instol i bsvn_r a. And al four communicate with the Repository layer—I i bsvn_ra_I| ocal connectsto therepository directly;
the other three do so over a network. The | i bsvn_fs_base and | i bsvn_f s_f s libraries are another pair of libraries that
implement the same functionality in different ways—both are plug-insto the common | i bsvn_f s library.
Theclient itself also highlights the benefits of modularity in the Subversion design. Subversion'sl i bsvn_cl i ent library isaone-
stop shop for most of the functionality necessary for designing aworking Subversion client (seethe section called “ Client Layer”). So
while the Subversion distribution provides only the svn command-line client program, several third-party programs provide various
forms of graphical client Uls. These GUIs use the same APIs that the stock command-line client does. This type of modularity has

played a large role in the proliferation of available Subversion clients and IDE integrations and, by extension, to the tremendous
adoption rate of Subversion itself.

Repository Layer

When referring to Subversion's Repository layer, we're generally talking about two basic concepts—the versioned filesystem
implementation (accessed vial i bsvn_fs, and supported by its| i bsvn_fs _base and | i bsvn_fs_fs plug-ins), and the
repository logic that wraps it (asimplemented in| i bsvn_r epos). These libraries provide the storage and reporting mechanisms
for the various revisions of your version-controlled data. Thislayer is connected to the Client layer via the Repository Access layer,
and is, from the perspective of the Subversion user, the stuff at the “other end of theline.”

217

Embedding Subversion

The Subversion filesystem is not a kernel-level filesystem that one would install in an operating system (such as the Linux ext2 or
NTFS), but instead is a virtua filesystem. Rather than storing “files’ and “directories’ asreal files and directories (the kind you can
navigate through using your favorite shell program), it uses one of two available abstract storage backends—either a Berkeley DB
database environment or aflat-file representation. (To learn more about the two repository backends, seethe section called “ Choosing
a Data Store”.) There has even been considerable interest by the development community in giving future releases of Subversion
the ahility to use other backend database systems, perhaps through a mechanism such as Open Database Connectivity (ODBC). In
fact, Google did something similar to this before launching the Google Code Project Hosting service: they announced in mid-2006
that members of its open source team had written a new proprietary Subversion filesystem plug-in that used Googl€'s ultra-scalable
Bigtable database for its storage.

The filesystem APl exported by | i bsvn_f s contains the kinds of functionality you would expect from any other filesystem API
—you can create and remove files and directories, copy and move them around, modify file contents, and so on. It also has features
that are not quite as common, such as the ability to add, modify, and remove metadata (“properties’) on each file or directory.
Furthermore, the Subversion filesystem is a versioning filesystem, which means that as you make changes to your directory tree,
Subversion remembers what your tree looked like before those changes. And before the previous changes. And the previous ones.
And so on, all theway back through versioning time to (and just beyond) the moment you first started adding thingsto the filesystem.

All the modifications you make to your tree are done within the context of a Subversion commit transaction. The following is a
simplified general routine for modifying your filesystem:

1. Begin a Subversion commit transaction.
2. Make your changes (adds, deletes, property modifications, etc.).
3. Commit your transaction.

Once you have committed your transaction, your filesystem modifications are permanently stored as historical artifacts. Each of these
cycles generates a single new revision of your tree, and each revision is forever accessible as an immutable snapshot of “the way
things were.”

The Transaction Distraction

The notion of a Subversion transaction can become easily confused with the transaction support provided by the underlying
database itself, especialy given the former's close proximity to the Berkeley DB database code in | i bsvn_fs_base. Both
types of transaction exist to provide atomicity and isolation. In other words, transactions give you the ability to perform a set of
actions in an all-or-nothing fashion—either all the actions in the set complete with success, or they all get treated as though none
of them ever happened—and in away that does not interfere with other processes acting on the data.

Database transactions generally encompass small operations related specifically to the modification of data in the database itself
(such as changing the contents of atable row). Subversion transactions are larger in scope, encompassing higher-level operations
such as making modifications to a set of files and directories that are intended to be stored as the next revision of the filesystem
tree. If that isn't confusing enough, consider the fact that Subversion uses a database transaction during the creation of a Subversion
transaction (so that if the creation of a Subversion transaction fails, the database will ook as though we had never attempted that
creation in the first place)!

Fortunately for users of the filesystem API, the transaction support provided by the database system itself is hidden amost
entirely from view (as should be expected from a properly modularized library scheme). It is only when you start digging into the
implementation of the filesystem itself that such things become visible (or interesting).

Most of the functionality the filesystem interface provides deals with actions that occur on individual filesystem paths. That is, from
outside the filesystem, the primary mechanism for describing and accessing the individual revisions of files and directories comes
through the use of path strings such as/ f oo/ bar , just as though you were addressing files and directories through your favorite
shell program. Y ou add new files and directories by passing their paths-to-be to the right API functions. Y ou query for information
about them by the same mechanism.

218

Embedding Subversion

Unlike most filesystems, though, a path alone is not enough information to identify a file or directory in Subversion. Think of a
directory tree as a two-dimensional system, where a node's siblings represent a sort of left-and-right motion, and navigating into
the node's subdirectories represents a downward motion. Figure 8.1, “Files and directories in two dimensions’ shows a typical
representation of atree as exactly that.

Figure8.1. Filesand directoriesin two dimensions

'47

The difference here is that the Subversion filesystem has a nifty third dimension that most filesystems do not have—Time!! In
the filesystem interface, nearly every function that has a pat h argument also expects ar oot argument. Thissvn_fs_root t
argument describes either arevision or a Subversion transaction (which is simply a revision in the making) and provides that third
dimension of context needed to understand the difference between/ f oo/ bar inrevision 32, and the samepath asit existsinrevision
98. Figure 8.2, “Versioning time—the third dimension!” shows revision history as an added dimension to the Subversion filesystem
universe.

Figure 8.2. Versioning time—the third dimension!

foai:5

ithy:5 bitty:5

Aswe mentioned earlier, thel i bsvn_f s APl looks and feelslike any other filesystem, except that it has this wonderful versioning
capability. It was designed to be usable by any program interested in a versioning filesystem. Not coincidentally, Subversion itself

IWe understand that this may come as a shock to sci-fi fans who have long been under the impression that Time was actually the fourth dimension, and we apologize
for any emotional traumainduced by our assertion of a different theory.

219

Embedding Subversion

isinterested in that functionality. But while the filesystem API should be sufficient for basic file and directory versioning support,
Subversion wants more—and that iswherel i bsvn_r epos comesin.

The Subversion repository library (I i bsvn_r epos) sits (logically speaking) atop the | i bsvn_f s API, providing additional
functionality beyond that of the underlying versioned filesystemlogic. It does not completely wrap each and every filesystem function
—only certain major steps in the general cycle of filesystem activity are wrapped by the repository interface. Some of these include
the creation and commit of Subversion transactions and the modification of revision properties. These particular events are wrapped
by therepository layer because they have hooks associated with them. A repository hook systemisnot strictly related to implementing
aversioning filesystem, so it livesin the repository wrapper library.

The hooks mechanism is but one of the reasons for the abstraction of a separate repository library from therest of the filesystem code.
Thel i bsvn_r epos API provides severa other important utilitiesto Subversion. These include the abilities to:

« Create, open, destroy, and perform recovery steps on a Subversion repository and the filesystem included in that repository.
« Describe the differences between two filesystem trees.

* Query for the commit log messages associated with all (or some) of the revisions in which a set of files was modified in the
filesystem.

» Generate a human-readable “dump” of the filesystem—a compl ete representation of the revisionsin the filesystem.

Parse that dump format, loading the dumped revisions into a different Subversion repository.

As Subversion continues to evolve, the repository library will grow with the filesystem library to offer increased functionality and
configurable option support.

Repository Access Layer

If the Subversion Repository layer is at “the other end of the line,” the Repository Access (RA) layer is the line itself. Charged
with marshaling data between the client libraries and the repository, this layer includes the | i bsvn_r a module loader library,
the RA modules themselves (which currently includes | i bsvn_ra_neon, |i bsvn_ra_l ocal, | i bsvn_ra_serf, and
i bsvn_ra_svn), and any additional libraries needed by one or more of those RA modules (such asthe nod_dav_svn Apache
moduleor | i bsvn_ra_svn'sserver, svnserve).

Since Subversion uses URLSs to identify its repository resources, the protocol portion of the URL scheme (usually file://,
http://,https://,svn://,orsvn+ssh://)isusedto determine which RA modulewill handle the communications. Each
module registersalist of the protocolsit knows how to “speak” so that the RA loader can, at runtime, determine which module to use
for the task at hand. Y ou can determine which RA modules are available to the Subversion command-line client, and what protocols
they claim to support, by running svn - -ver si on:

$ svn --version
svn, version 1.6.0
conpil ed Mar 21 2009, 17:27:36

Copyright (C) 2000-2009 Col | abNet .
Subversion is open source software, see http://subversion. apache. org/
This product includes software devel oped by Coll abNet (http://ww. Collab. Net/).

The follow ng repository access (RA) nodul es are avail abl e:

* ra_neon : Modul e for accessing a repository via WbDAV protocol using Neon.
- handles 'http' schene

220

Embedding Subversion

- handl es 'https' schene
* ra_svn : Mdule for accessing a repository using the svn network protocol
- with Cyrus SASL aut hentication
- handl es 'svn' schene
* ra_local : Mdule for accessing a repository on |ocal disk
- handles '"file'" schene
* ra_serf : Module for accessing a repository via WbDAV protocol using serf.
- handles 'http' schene
- handl es 'https' schene

$

The public API exported by the RA layer contains functionality necessary for sending and receiving versioned data to and from
the repository. And each of the available RA plug-insis able to perform that task using a specific protocol—| i bsvn_ra_neon
and |l i bsvn_ra_serf speak HTTP/WebDAV (optionally using SSL encryption) with an Apache HTTP Server that is running
themod_dav_svn Subversion server module; | i bsvn_ra_svn speaks a custom network protocol with the svnserve program;
and so on.

For those who wish to access a Subversion repository using still another protocol, that is precisely why the Repository Access layer
ismodularized! Developers can simply write anew library that implements the RA interface on one side and communicates with the
repository on the other. Y our new library can use existing network protocols or you can invent your own. Y ou could use interprocess
communication (IPC) calls, or—let's get crazy, shall we?—you could even implement an email-based protocol. Subversion supplies
the APIs; you supply the creativity.

Client Layer

On the client side, the Subversion working copy is where all the action takes place. The bulk of functionality implemented by the
client-side libraries exists for the sole purpose of managing working copies—directories full of files and other subdirectories that
serveasasort of local, editable“reflection” of one or more repository |ocations—and propagating changes to and from the Repository
Access layer.

Subversion'sworking copy library, | i bsvn_wc, isdirectly responsible for managing the datain the working copies. To accomplish
this, the library stores administrative information about each working copy directory within aspecial subdirectory. This subdirectory,
named . svn, ispresent in each working copy directory and contains various other files and directories that record state and provide
a private workspace for administrative action. For those familiar with CV'S, this. svn subdirectory is similar in purpose to the CVS
administrative directories found in CV'S working copies. For more information about the . svn administrative area, see the section
called “Inside the Working Copy Administration Area” later in this chapter.

The Subversion client library, | i bsvn_cl i ent , hasthe broadest responsibility; itsjob isto mingle the functionality of the working
copy library with that of the Repository Access layer, and then to provide the highest-level API to any application that wishes to
perform general revision control actions. For example, the function svn_cl i ent _checkout () takesaURL as an argument. It
passes this URL to the RA layer and opens an authenticated session with a particular repository. It then asks the repository for a
certain tree, and sendsthistreeinto the working copy library, which then writesafull working copy to disk (. svn directoriesand all).

The client library is designed to be used by any application. While the Subversion source code includes a standard command-line
client, it should be very easy to write any number of GUI clients on top of the client library. New GUIs (or any new client, really) for
Subversion need not be clunky wrappers around the included command-line client—they have full accessviathel i bsvn_cl i ent
API to the same functionality, data, and callback mechanisms that the command-line client uses. In fact, the Subversion source code
tree containsasmall C program (whichyou canfind att ool s/ exanpl es/ m ni mal _cl i ent . ¢) that exemplifieshow towield
the Subversion API to create a simple client program.

221

Embedding Subversion

Binding Directly—A Word About Correctness

Why should your GUI program bind directly with al i bsvn_cl i ent instead of acting as a wrapper around a command-line
program? Besides simply being more efficient, it can be more correct aswell. A command-line program (such asthe one supplied
with Subversion) that bindsto the client library needsto effectively trans ate feedback and requested data bitsfrom C typesto some
form of human-readable output. This type of translation can be lossy. That is, the program may not display all of the information
harvested from the API or may combine bits of information for compact representation.

If you wrap such a command-line program with yet another program, the second program has access only to aready interpreted
(and aswe mentioned, likely incomplete) information, which it must again trans ate into its representation format. With each layer
of wrapping, the integrity of the original data is potentially tainted more and more, much like the result of making a copy of a
copy (of acopy...) of afavorite audio or video cassette.

But the most compelling argument for binding directly to the APIs instead of wrapping other programs is that the Subversion
project makes compatibility promises regarding its APIs. Across minor versions of those APIs (such as between 1.3 and 1.4), no
function's prototype will change. In other words, you aren't forced to update your program's source code simply because you've
upgraded to anew version of Subversion. Certain functions might be deprecated, but they still work, and this gives you a buffer
of time to eventually embrace the newer APIs. These kinds of compatibility promises do not exist for Subversion command-line
program output, which is subject to change from release to release.

Inside the Working Copy Administration Area

As we mentioned earlier, each directory of a Subversion working copy contains a specia subdirectory called . svn that houses
administrative data about that working copy directory. Subversion usesthe information in . svn to keep track of things such as:

» Which repository location(s) are represented by the files and subdirectoriesin the working copy directory
» What revision of each of those files and directories is currently present in the working copy

» Any user-defined properties that might be attached to those files and directories

* Pristine (unedited) copies of the working copy files

The Subversion working copy administration area's layout and contents are considered implementation details not really intended for
human consumption. Devel opers are encouraged to use Subversion's public APIs, or the toolsthat Subversion provides, to access and
manipulate the working copy data, instead of directly reading or modifying those files. The file formats employed by the working
copy library for its administrative data do change from time to time—a fact that the public APIs do a great job of hiding from the
average user. In this section, we expose some of these implementation details sheerly to appease your overwhelming curiosity.

The Entries File

Perhapsthesingle most important fileinthe. svn directoryistheent r i es file. It containsthe bulk of the administrativeinformation
about the versioned items in a working copy directory. This one file tracks the repository URLS, pristine revision, file checksums,
pristine text and property timestamps, scheduling and conflict state information, last-known commit information (author, revision,
timestamp), loca copy history—practically everything that a Subversion client is interested in knowing about a versioned (or to-
be-versioned) resource!

Folksfamiliar with CV S'sadministrative directories will have recognized at this point that Subversion's. svn/ ent ri es fileserves
the purposes of, among other things, CVSsCVS/ Ent ri es, CVS/ Root , and CVS/ Reposi t or y files combined.

Theformat of the. svn/ ent ri es file has changed over time. Originally an XML file, it now uses a custom—though still human-
readable—file format. While XML was a great choice for early developers of Subversion who were frequently debugging the
file's contents (and Subversion's behavior in light of them), the need for easy developer debugging has diminished as Subversion
has matured and has been replaced by the user's need for snappier performance. Be aware that Subversion's working copy library
automatically upgrades working copies from one format to another—it reads the old formats and writes the new—uwhich saves you

222

Embedding Subversion

the hassle of checking out a new working copy, but can also complicate situations where different versions of Subversion might be
trying to use the same working copy.

Pristine Copies and Property Files

As mentioned before, the . svn directory also holds the pristine “text-base” versions of files. You can find those in . svn/ t ext -
base. The benefits of these pristine copies are multiple—network-free checks for local modifications and difference reporting,
network-free reversion of modified or missing files, more efficient transmission of changes to the server—but they come at the cost
of having each versioned file stored at |east twice on disk. These days, this seemsto be a negligible penalty for most files. However,
the situation gets uglier as the size of your versioned files grows. Some attention is being given to making the presence of the “text-
base” an option. Ironically, though, it is as your versioned files sizes get larger that the existence of the “text-base” becomes more
crucial—who wants to transmit a huge file across a network just because she wants to commit atiny changeto it?

Similar in purpose to the “text-base” files are the property files and their pristine “prop-base” copies, located in . svn/ pr ops and
. svn/ pr op- base, respectively. Since directories can have properties too, there arealso . svn/ di r - props and . svn/ di r -
pr op- base files.

Using the APIs

Developing applications against the Subversion library APIsisfairly straightforward. Subversionisprimarily aset of Clibraries, with
header (. h) filesthat livein the subver si on/ i ncl ude directory of the source tree. These headers are copied into your system
locations (e.g., / usr/ |1 ocal /i ncl ude) when you build and install Subversion itself from source. These headers represent the
entirety of the functions and types meant to be accessible by users of the Subversion libraries. The Subversion developer community
is meticulous about ensuring that the public API iswell documented—refer directly to the header files for that documentation.

When examining the public header files, the first thing you might notice is that Subversion's datatypes and functions are namespace-
protected. That is, every public Subversion symbol name begins with svn_, followed by a short code for the library in which the
symbol is defined (such aswc, cl i ent, f s, etc.), followed by a single underscore (_), and then the rest of the symbol name.
Semipublic functions (used among source files of a given library but not by code outside that library, and found inside the library
directories themselves) differ from this naming schemein that instead of a single underscore after the library code, they use adouble
underscore (_). Functions that are private to a given source file have no special prefixing and are declared st at i c. Of course, a
compiler isn't interested in these naming conventions, but they help to clarify the scope of a given function or datatype.

Another good source of information about programming against the Subversion APIsis the project's own hacking guidelines, which
you can find at http://subversion.apache.org/docs/community-guide/. This document contains useful information, which, whileaimed
at developers and would-be developers of Subversion itself, is equally applicable to folks devel oping against Subversion as a set of
third-party libraries.?

The Apache Portable Runtime Library

Along with Subversion's own datatypes, you will see many referencesto datatypesthat begin withapr _—symbolsfrom the Apache
Portable Runtime (APR) library. APR is Apache's portability library, originally carved out of its server code as an attempt to separate
the OS-gpecific bitsfrom the OS-independent portions of the code. Theresult wasalibrary that providesageneric API for performing
operations that differ mildly—or wildly—from OS to OS. While the Apache HTTP Server was obviously the first user of the APR
library, the Subversion developers immediately recognized the value of using APR as well. This means that there is practically no
OS-gpecific code in Subversion itself. Also, it means that the Subversion client compiles and runs anywhere that the Apache HTTP
Server does. Currently, thislist includes al flavors of Unix, Win32, BeOS, 0S/2, and Mac OS X.

In addition to providing consistent implementations of system calls that differ across operating wstems,3 APR gives Subversion
immediate access to many custom datatypes, such as dynamic arrays and hash tables. Subversion uses these types extensively. But
perhapsthe most pervasive APR datatype, found in nearly every Subversion API prototype, istheapr _pool _t —the APR memory

2After all, Subversion uses Subversion's APIs, too.
3Subversion uses ANSI system calls and datatypes as much as possible.

223

http://subversion.apache.org/docs/community-guide/

Embedding Subversion

pool. Subversion uses pools internally for all its memory allocation needs (unless an external library requires a different memory
management mechanism for data passed through its API) 4andwhile aperson coding against the Subversion APIsisnot required to do
the same, sheisrequired to provide poolsto the API functionsthat need them. This meansthat users of the Subversion APl must also
link against APR, must call apr _i ni tialize() toinitiaize the APR subsystem, and then must create and manage pools for use
with Subversion API calls, typically by usingsvn_pool create(),svn_pool clear(),andsvn_pool destroy().

Programming with Memory Pools

Almost every developer who has used the C programming language has at some point sighed at the daunting task of managing
memory usage. Allocating enough memory to use, keeping track of those allocations, freeing the memory when you no longer
need it—these tasks can be quite complex. And of course, failure to do those things properly can result in a program that crashes
itself, or worse, crashes the computer.

Higher-level languages, on the other hand, either take the job of memory management away from you completely or make it
something you toy with only when doing extremely tight program optimization. Languages such as Java and Python use garbage
collection, allocating memory for objects when needed, and automatically freeing that memory when the object isno longer in use.

APR providesamiddle-ground approach called pool-based memory management. It allowsthe devel oper to control memory usage
at alower resolution—per chunk (or “pool™) of memory, instead of per alocated object. Rather than using mal | oc() andfriends
to allocate enough memory for a given object, you ask APR to allocate the memory from a memory pool. When you're finished
using the objects you've created in the pool, you destroy the entire pool, effectively de-allocating the memory consumed by all
the objects you alocated from it. Thus, rather than keeping track of individual objects that need to be de-allocated, your program
simply considers the general lifetimes of those objects and alocates the objects in a pool whose lifetime (the time between the
pool's creation and its deletion) matches the object's needs.

Functions and Batons

Tofacilitate“ streamy” (asynchronous) behavior and provide consumers of the Subversion C API with hooksfor handling information
in customizable ways, many functions in the API accept pairs of parameters. a pointer to a callback function, and a pointer to a blob
of memory called abaton that carries context information for that callback function. Batons are typically C structures with additional
information that the callback function needs but which is not given directly to the callback function by the driving API function.

URL and Path Requirements

With remote version control operation as the whole point of Subversion's existence, it makes sense that some attention has been paid
to internationalization (i18n) support. After all, while “remote” might mean “ acrossthe office,” it could just aswell mean “ acrossthe
globe.” To facilitate this, all of Subversion's public interfaces that accept path arguments expect those paths to be canonicalized—
which ismost easily accomplished by passing them throughthesvn_pat h_canoni cal i ze() function—and encoded in UTF-8.
This means, for example, that any new client binary that drivesthe | i bsvn_cl i ent interface needs to first convert paths from
the locale-specific encoding to UTF-8 before passing those paths to the Subversion libraries, and then reconvert any resultant output
paths from Subversion back into the local€'s encoding before using those paths for non-Subversion purposes. Fortunately, Subversion
provides a suite of functions (see subver si on/ i ncl ude/ svn_ut f . h) that any program can use to do these conversions.

Also, Subversion APIs require all URL parameters to be properly URI-encoded. So, instead of passing fil e:/// home/
usernane/ My File.txt asthe URL of afilenamed My Fil e. txt, youneedtopassfil e:///honme/ user nane/ Wy
%20Fi | e. t xt. Again, Subversion supplies helper functions that your application can use—svn_path_uri _encode() and
svn_pat h_uri _decode(), for URI encoding and decoding, respectively.

Using Languages Other Than C and C++

If you are interested in using the Subversion libraries in conjunction with something other than a C program—say, a Python or Perl
script—Subversion has some support for this via the Simplified Wrapper and Interface Generator (SWIG). The SWIG bindings for

“Neon and Berkeley DB are examples of such libraries.

224

Embedding Subversion

Subversion arelocatedinsubver si on/ bi ndi ngs/ swi g. They are still maturing, but they are usable. These bindings allow you
to call Subversion API functions indirectly, using wrappers that translate the datatypes native to your scripting language into the
datatypes needed by Subversion's C libraries.

Significant efforts have been made toward creating functional SWIG-generated bindings for Python, Perl, and Ruby. To some extent,
the work done preparing the SWIG interface files for these languages is reusabl e in efforts to generate bindings for other languages
supported by SWIG (which include versions of C#, Guile, Java, MzScheme, OCaml, PHP, and Tcl, among others). However, some
extraprogramming is required to compensate for complex APIsthat SWIG needs some help transl ating between languages. For more
information on SWIG itself, see the project's web site at http://www.swig.org/.

Subversion aso haslanguage bindingsfor Java. Thejavahl bindings(locatedinsubver si on/ bi ndi ngs/ j ava inthe Subversion
source tree) aren't SWIG-based, but are instead a mixture of Java and hand-coded JNI. Javahl covers most Subversion client-side
APIsand is specifically targeted at implementors of Java-based Subversion clients and |DE integrations.

Subversion's language bindings tend to lack the level of developer attention given to the core Subversion modules, but can generally
be trusted as production-ready. A number of scripts and applications, alternative Subversion GUI clients, and other third-party tools
are successfully using Subversion's language bindings today to accomplish their Subversion integrations.

It's worth noting here that there are other options for interfacing with Subversion using other languages: alternative bindings for
Subversion that aren't provided by the Subversion development community at all. There are a couple of popular ones we feel are
especially noteworthy. First, Barry Scott's PySVN bindings (http://pysvn.tigris.org/) are a popular option for binding with Python.
PySVN boasts of a more Pythonic interface than the more C-like APIs provided by Subversion's own Python bindings. And if you're
looking for a pure Java implementation of Subversion, check out SVNKit (http://svnkit.com/), which is Subversion rewritten from
the ground up in Java.

SVNK:it Versus javahl

In 2005, a small company called TMate announced the 1.0.0 release of JavaSVN—a pure Java implementation of Subversion.
Since then, the project has been renamed to SVNK:it (available at http://svnkit.com/) and has seen great success as a provider of
Subversion functionality to various Subversion clients, IDE integrations, and other third-party tools.

The SVNK:it library isinteresting in that, unlike the javahl library, it is not merely awrapper around the official Subversion core
libraries. In fact, it shares no code with Subversion at all. But while it is easy to confuse SVNKit with javahl, and easier still to
not even realize which of these libraries you are using, folks should be aware that SVNK:it differs from javahl in some significant
ways. First, while SVNKit is devel oped as open source software just like Subversion, SVNK:it's license is more restrictive than
that of Subversion.® Final ly, by aiming to be a pure Java Subversion library, SVNK:it is limited in which portions of Subversion
can be reasonably cloned while still keeping up with Subversion's releases. This has already happened once—SVNKIit cannot
access BDB-backed Subversion repositoriesviathef i | e: / / protocol because there's no pure Javaimplementation of Berkeley
DB that is file-format-compatible with the native implementation of that library.

That said, SVNKit has a well-established track record of reliability. And a pure Java solution is much more robust in the face
of programming errors—a bug in SVNKit might raise a catchable Java Exception, but a bug in the Subversion core libraries as
accessed via javahl can bring down your entire Java Runtime Environment. So, weigh the costs when choosing a Java-based
Subversion implementation.

Code Samples

Example 8.1, “Using the repository layer” contains a code segment (written in C) that illustrates some of the concepts we've been
discussing. It uses both the repository and filesystem interfaces (as can be determined by the prefixessvn_repos_andsvn_fs_

SRedistributions in any form must be accompanied by information on how to obtain complete source code for the software that uses SVNKit and any accompanying
software that uses the software that uses SVNKit. See http://svnkit.com/license.html for details.

225

http://www.swig.org/
http://pysvn.tigris.org/
http://svnkit.com/
http://svnkit.com/
http://svnkit.com/license.html

Embedding Subversion

of thefunction names, respectively) to create anew revisionin which adirectory isadded. Y ou can see the use of an APR pool, which
is passed around for memory allocation purposes. Also, the code reveals a somewhat obscure fact about Subversion error handling
—all Subversion errors must be explicitly handled to avoid memory leakage (and in some cases, application failure).

Example 8.1. Using therepository layer

/* Convert a Subversion error into a sinple boolean error code.
*

* NOTE: Subversion errors nust be cleared (using svn_error_clear())

* because they are allocated fromthe gl obal pool, else nenory
* | eaki ng occurs.
*/
#defi ne | NT_ERR(expr) \
do { \
svn_error_t *_ tenperr = (expr); \
if (__tenmperr) \
{ \
svn_error_clear(__tenperr); \
return 1,; \
} \
return O; \
} while (0)

/* Create a new directory at the path NEWD RECTORY in the Subversion
* repository located at REPOS PATH. Performall nmenory allocation in
* POCL. This function will create a new revision for the addition of
* NEW D RECTORY. Return zero if the operation conpletes
* successfully, nonzero ot herw se.

*/

static int

make _new di rectory(const char *repos_path,

const char *new directory,
apr _pool _t *pool)

svn_error_t *err;
svn_repos_t *repos;
svn_fs t *fs;
svn_revnumt youngest _rev;
svn_fs txn_t *txn;

svn_fs root _t *txn_root;
const char *conflict_str;

/* Open the repository |ocated at REPOS_PATH.
*/
I NT_ERR(svn_repos_open(& epos, repos_path, pool));

/* Get a pointer to the filesystemobject that is stored i n REPCS.
*/
fs = svn_repos_fs(repos);

/* Ask the filesystemto tell us the youngest revision that
* currently exists.
*/

226

Embedding Subversion

I NT_ERR(svn_fs_youngest_rev(&oungest _rev, fs, pool));

/* Begin a new transaction that is based on YOUNGEST _REV. W are
* less likely to have our later commit rejected as conflicting if we
* always try to make our changes agai nst a copy of the |atest snapshot
* of the filesystemtree.
*/
I NT_ERR(svn_repos_fs_begin_txn_for_conmt2(& xn, repos, youngest_rev,
apr _hash_nake(pool), pool));

/* Now that we have started a new Subversion transaction, get a root
* object that represents that transaction.

*/

I NT_ERR(svn_fs_txn_root (& xn_root, txn, pool));

/* Create our new directory under the transaction root, at the path
* NEW_DI RECTORY.

*/

I NT_ERR(svn_fs_make_dir(txn_root, new directory, pool));

/* Conmt the transaction, creating a new revision of the filesystem
* whi ch includes our added directory path.
*/
err = svn_repos_fs_commt_txn(&onflict_str, repos,
&youngest _rev, txn, pool);
if (! err)
{
/* No error? Excellent! Print a brief report of our success.
*/
printf("Directory '%' was successfully added as new revision
"% d .\n", new directory, youngest_rev);

}
else if (err->apr_err == SVYN_ERR FS_CONFLI CT)
{
/* Uh-oh. Qur conmit failed as the result of a conflict
* (sonmeone el se seens to have made changes to the sane area
* of the filesystemthat we tried to nodify). Print an error
* nmessage
*/
printf("A conflict occurred at path '%' while attenpting "
"to add directory '%' to the repository at '%'.\n",
conflict_str, new directory, repos_path);

el se
{
/* Sonme other error has occurred. Print an error nessage.
*/
printf("An error occurred while attenpting to add directory '%
"to the repository at '%'.\n",
new di rectory, repos_path);

}

I NT_ERR(err);

227

Embedding Subversion

Note that in Example 8.1, “Using the repository layer”, the code could just as easily have committed the transaction using
svn_fs_comm t _txn().Butthefilesystem API knows nothing about the repository library's hook mechanism. If you want your
Subversion repository to automatically perform some set of non-Subversion tasks every time you commit atransaction (e.g., sending
an email that describes all the changes made in that transaction to your developer mailing list), you needtousethel i bsvn_r epos-
wrapped version of that function, which adds the hook triggering functionality—in this case, svn_repos_fs_conmit_txn().
(For more information regarding Subversion's repository hooks, see the section called “Implementing Repository Hooks”.)

Now let's switch languages. Example 8.2, “Using the repository layer with Python” isasample program that uses Subversion's SWIG
Python bindings to recursively crawl the youngest repository revision, and to print the various paths reached during the crawl.

Example 8.2. Using the repository layer with Python

#!/ usr/ bi n/ pyt hon

"""Crawl a repository, printing versioned object path nanes.

i mport sys
i mport os.path
i mport svn.fs, svn.core, svn.repos

def crawl _filesystemdir(root, directory):
"""Recursively crawl DI RECTORY under ROOT in the filesystem and return
alist of all the paths at or bel ow DI RECTCRY. """

Print the name of this path.
print directory + "/"

CGet the directory entries for DI RECTORY.
entries = svn.fs.svn_fs dir_entries(root, directory)

Loop over the entries.

nanes = entries. keys()

for nanme in nanes:
Calculate the entry's full path.
full _path = directory + '/' + nane

return
add to

If the entry is a directory, recurse. The recursion w
alist with the entry and all its children, which we w
our running list of paths.
if svn.fs.svn_fs_ is dir(root, full _path):

craw filesystemdir(root, full _path)
el se:

Else it's a file, so print its path here.

print full _path

def craw _youngest (repos_path):
"""COpen the repository at REPOCS PATH, and recursively craw its
youngest revision."""

Open the repository at REPOS PATH, and get a reference to its
versioning filesystem

repos_obj = svn.repos.svn_repos_open(repos_pat h)

fs_obj = svn.repos.svn_repos_fs(repos_obj)

228

Embedding Subversion

Query the current youngest revision.
youngest _rev = svn.fs.svn_fs_youngest _rev(fs_obj)

Open a root object representing the youngest (HEAD) revision.
root_obj = svn.fs.svn_fs revision_root(fs_obj, youngest_rev)

Do the recursive craw .
crawm filesystemdir(root_obj, "")
if _nane_ == "_ min__
Check for sane usage.
if len(sys.argv) != 2:
sys.stderr.wite("Usage: % REPOS _PATH n"
% (0s. pat h. basenane(sys. argv[0])))

sys.exit (1)

Canoni cal i ze the repository path.
repos_path = svn.core.svn_path_canonical i ze(sys. argv[1])

Do the real work.
crawl _youngest (repos_pat h)

This same program in C would need to deal with APR's memory pool system. But Python handles memory usage automatically,
and Subversion's Python bindings adhere to that convention. In C, you'd be working with custom datatypes (such as those provided
by the APR library) for representing the hash of entries and the list of paths, but Python has hashes (called “dictionaries’) and lists
as built-in datatypes, and it provides a rich collection of functions for operating on those types. So SWIG (with the help of some
customizations in Subversion's language bindings layer) takes care of mapping those custom datatypes into the native datatypes of
the target language. This provides amore intuitive interface for users of that language.

The Subversion Python bindings can be used for working copy operations, too. In the previous section of this chapter, we mentioned
thel i bsvn_cl i ent interface and how it exists for the sole purpose of simplifying the process of writing a Subversion client.
Example 8.3, “ A Python status crawler” isabrief example of how that library can be accessed viathe SWIG Python bindings to re-
create a scaled-down version of the svn status command.

Example 8.3. A Python status crawler

#!/ usr/ bin/env python

"""Crawm a working copy directory, printing status information.

i mport sys

i mport os.path

i mport get opt

i mport svn.core, svn.client, svn.wc

def generate_status_code(status):
"""Transl ate a status value into a single-character status code,
using the sanme | ogic as the Subversion commnd line client."""
code_map = { svn.wc.svn_wc_status_none : .
svn.wc. svn_wc_st at us_nor nal A
svn.wc. svn_wc_st at us_added DA
we

svn. we. svn_wc_st at us_mi ssi ng S

229

Embedding Subversion

svn.wc. svn_wc_status_i nconplete @ '1',
svn.wc. svn_wc_status_del eted . 'D,
svn. wc. svn_wc_status_repl aced 'R,
svn.wc. svn_wc_status_nodified i\
svn.wc. svn_wc_status_conflicted 'C,
svn.wc. svn_wc_status_obstruct ed e~
svn. wc. svn_wc_st at us_i gnor ed B I
svn. wc. svn_wc_st at us_ext er nal DX,
svn.wc. svn_wc_status_unversioned : '?',

}

return code_map. get(status, '?')

def do_status(wc_path, verbose, prefix):
Build a client context baton.
ctx = svn.client.svn_client_create_context()

def _status_call back(path, status):
"""A call back function for svn_client_status."""
Print the path, mnus the bit that overlaps with the root of
the status craw
text _status = generate_status_code(status.text_status)
prop_status = generate_status_code(status. prop_status)
prefix_text ="'
if prefix is not None:
prefix_text = prefix +
print '%%% %' % (prefix_text, text_status, prop_status, path)

Do the status crawl, using _status_call back() as our callback function
revi sion = svn.core.svn_opt_revision_t()
revi sion.type = svn.core.svn_opt_revision_head
svn.client.svn_client_status2(wc_path, revision, _status_call back
svn.core.svn_depth_infinity, verbose,
0, 0, 1, ctx)

def usage_and_exit (errorcode):
"""Print usage nessage, and exit w th ERRORCODE. """
stream = errorcode and sys.stderr or sys.stdout
streamwite("""Usage: % OPTI ONS WC- PATH

Print working copy status, optionally with a bit of prefix text.

Opt i ons:
--help, -h : Show this usage nmessage
--prefix ARG : Print ARG followed by a space, before each |line of output
--verbose, -v : Show all statuses, even uninteresting ones
""" 9 (0s. pat h. basenane(sys.argv[0])))
sys.exit(errorcode)

if _nane_ ="' _ min__':
Parse command-|ine options.
try:
opts, args = getopt.getopt(sys.argv[1l:], "hv",

["hel p*, "prefix=", "verbose"])

230

Embedding Subversion

except getopt. GetoptError:
usage_and_exit (1)
verbose = 0
prefix = None
for opt, arg in opts:
if opt in ("-h", "--help"):
usage_and_exit (0)
if opt in ("--prefix"):
prefix = arg
if opt in ("-v", "--verbose"):
verbose = 1
if len(args) !'= 1:
usage_and_exit(2)

Canoni cal i ze the repository path.
wc_path = svn.core.svn_path_canoni cal i ze(args[0])

Do the real work.

try:
do_status(wc_pat h, verbose, prefix)

except svn. core. Subversi onException, e:
sys.stderr.wite("Error (%): 9%\n" % (e.apr_err, e.nmessage))
sys.exit (1)

As was the case in Example 8.2, “Using the repository layer with Python”, this program is pool-free and uses, for the most part,
normal Python datatypes.

to do so can trigger assertions in the underlying Subversion C library which translate into rather immediate and

Run user-provided pathsthroughsvn_pat h_canoni cal i ze() beforepassingthemto other API functions. Failure
Q unceremonious program abortion.

Of particular interest to users of the Python flavor of Subversion's API is the implementation of callback functions. As previously
mentioned, Subversion's C API makesliberal use of the callback function/baton paradigm. API functionswhichin C accept afunction
and baton pair only accept a callback function parameter in Python. How, then, does the caller pass arbitrary context information to
the callback function? In Python, this is done by taking advantage of Python's scoping rules and default argument values. Y ou can
seethisin actionin Example 8.3, “A Python status crawler”. Thesvn_cl i ent _st at us2() functionisgiven acallback function
(_status_cal | back()) but no baton—_st at us_cal | back() gets access to the user-provided prefix string because that
variable falls into the scope of the function automatically.

Summary

One of Subversion's greatest features isn't something you get from running its command-line client or other tools. It's the fact that
Subversion was designed modularly and provides a stable, public APl so that others—like yourself, perhaps—can write custom
software that drives Subversion's core logic.

In this chapter, wetook acloser look at Subversion's architecture, examiningitslogical layersand describing that public API, thevery
same API that Subversion's own layers use to communicate with each other. Many developers have found interesting uses for the
Subversion API, from simple repository hook scripts, to integrations between Subversion and some other application, to completely
different version control systems. What unique itch will you scratch with it?

231

Chapter 9. Subversion Complete Reference

This chapter is intended to be a complete reference to using Subversion. It includes command summaries and examples for all
the command-line tools provided as part of the stock Subversion distribution, configuration information for the Subversion server
modules, and other information that lends itself to a reference format.

svn—Subversion Command-Line Client

svn isthe official command-line client of Subversion. It offers no small number of subcommands and options. Subcommands and
other non-option arguments must appear in a specified order on the command line used to invoke svn. Options, on the other hand,
may appear anywhere on the command line (after the program name, of course), and in general, their order isirrelevant. For example,
all of the following are valid waysto use svn status, and are interpreted in exactly the same way:

svn -vq status nyfile
svn status -v -q nyfile
svn -q status -v nyfile
svn status -vg nyfile
svn status nyfile -qv

LR o

svn Options

While Subversion hasdifferent optionsfor its subcommands, all optionsexist in asingle namespace—that is, each option isguaranteed
to mean the same thing regardless of the subcommand you use it with. For example, - - ver bose (- v) aways means “verbose
output,” regardless of the subcommand you use it with.

The svn command-line client usualy exits quickly with an error if you pass it an option which does not apply to the specified
subcommand. But as of Subversion 1.5, several of the options which apply to all—or nearly all—of the subcommands have been
deemed acceptable by all subcommands, even if they have no effect on some of them. They appear grouped together in the command-
line client's usage messages as global options. This was done to assist folks who write scripts which wrap the command-line client.
These global options are as follows:

--config-dir DR

Instructs Subversion to read configuration information from the specified directory instead of the default location
(. subver si on in the user's home directory).

--config-optionFl LE:SECTI ON:OPTI ON=[VALUE]

Sets, for the duration of the command, the value of a runtime configuration option. FI LE and SECTI ON are the runtime
configuration file (either confi g or servers) and the section thereof, respectively, which contain the option whose
value you wish to change. OPTI ON is, of course, the option itself, and VALUE the vaue (if any) you wish to assign
to the option. For example, to temporarily disable the use of the automatic property setting feature, use - - confi g-
option=config: m scel | any: enabl e- aut o- pr ops=no. You can use this option multiple times to change multiple
option values simultaneously.

--no- aut h-cache

Prevents caching of authentication information (e.g., username and password) in the Subversion runtime configuration
directories.

232

Subversion Complete Reference

--non-interactive

Disables all interactive prompting. Some examples of interactive prompting include requests for authentication credentials and
conflict resolution decisions. Thisis useful if you're running Subversion inside an automated script and it's more appropriate to
have Subversion fail than to prompt for more information.

- - passwor d PASSWD

Specifies the password to use when authenticating against a Subversion server. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

--trust-server-cert

When used with - - non- i nt er act i ve, instructs Subversion to accept SSL server certificates issued by unknown certificate
authoritieswithout first prompting the user. For security's sake, you should use this option only when the integrity of the remote
server and the network path between it and your client is known to be trustworthy.

- -user name NAME

Specifies the username to use when authenticating against a Subversion server. If not provided, or if incorrect, Subversion will
prompt you for thisinformation as needed.

Therest of the options apply and are accepted by only a subset of the subcommand. They are asfollows:
--accept ACTI ON

Specifies an action for automatic conflict resolution. Possible actions are post pone, base, mi ne-full ,theirs-full,
edit,and| aunch.

- -aut o- props

Enables auto-props, overriding the enabl e- aut o- pr ops directiveintheconfi g file.
- -change (- c) ARG

Used as ameans to refer to a specific “change” (ak.a. arevision). Thisoption is syntactic sugar for “-r ARG-1:ARG”.
--changel i st ARG

Instructs Subversion to operate only on members of the changelist named ARG. Y ou can use this option multiple timesto specify
sets of changelists.

--cl ARG
Andiasfor the- - changel i st option.
- -dept h ARG

Instructs Subversion to limit the scope of an operation to a particular tree depth. ARG is one of enpt y (only the target itself),
fil es (thetarget and any immediate file children thereof), i mredi at es (the target and any immediate children thereof), or
i nfinity (thetarget and al of its descendants—full recursion).

--diff-cnd CVD

Specifies an external program to use to show differences between files. When svn diff is invoked without this option, it uses
Subversion's internal diff engine, which provides unified diffs by default. If you want to use an external diff program, use - -
di ff-cnd. You can pass optionsto the diff program withthe - - ext ensi ons (- x) option (more on that later in this section).

233

Subversion Complete Reference

--diff3-cnd CVMD

Specifies an external program to use to merge files.
--dry-run

Goes through all the motions of running acommand, but makes no actual changes—either on disk or in the repository.
--editor-cnd CVD

Specifies an external program to use to edit a log message or a property value. See the edi t or - cnd section in the section
called “Config” for ways to specify adefault editor.

--encodi ng ENC

Tells Subversion that your commit message is encoded in the charset provided. The default is your operating system's native
locale, and you should specify the encoding if your commit message isin any other encoding.

- -ext ensi ons (- x) ARG
Specifies customizations which Subversion should make when performing difference calculations. Valid extensions include:
--i gnor e- space- change (- b)
Ignore changes in the amount of white space.
--ignore-all-space (-w
Ignore all white space.
--ignore-eol -style
Ignore changes in EOL (end-of-line) style.
--show c-function(-p)
Show C function names in the diff output.
--unified(-u)
Show three lines of unified diff context.
The default value of ARGis - u. If you wish to pass multiple arguments, you must enclose all of them in quotes.
Note that when Subversion is configured to invoke an external diff command, the value of the - - ext ensi on (- x) option
isn't restricted to the previously mentioned options, but may be any additional arguments which Subversion should pass to that
command.
--file (- F)FI LENAME

Uses the contents of the named file for the specified subcommand, though different subcommands do different things with this
content. For example, svn commit uses the content as a commit log, whereas svn propset usesit as a property value.

--force

Forces aparticular command or operation to run. Subversion will prevent you from performing some operationsin normal usage,
but you can pass the force option to tell Subversion “I know what I'm doing as well as the possible repercussions of doing it, so

234

Subversion Complete Reference

let me at 'em.” This option is the programmatic equivalent of doing your own electrical work with the power on—if you don't
know what you're doing, you're likely to get a nasty shock.

--force-1og

Forces a suspicious parameter passed to the - - nessage (-n) or --fi |l e (- F) option to be accepted as valid. By default,
Subversion will produce an error if parameters to these options look like they might instead be targets of the subcommand. For
example, if you pass a versioned file's path to the - - f i | e (- F) option, Subversion will assume you've made a mistake, that
the path was instead intended as the target of the operation, and that you simply failed to provide some other—unversioned—
file as the source of your log message. To assert your intent and override these types of errors, passthe - - f or ce- | og option
to subcommands that accept log messages.

--help(-hor-?)

If used with one or more subcommands, showsthe built-in help text for each. If used alone, it displaysthe general client help text.
--ignore-ancestry

Tells Subversion to ignore ancestry when calculating differences (rely on path contents alone).
--ignore-externals

Tells Subversion to ignore external s definitions and the external working copies managed by them.
--increnental

Prints output in aformat suitable for concatenation.
--keep-changel i sts

Tells Subversion not to delete changelists after committing.
- -keep- I ocal

Keepsthelocal copy of afile or directory (used with the svn delete command).
--limt (-1)NUM

Shows only the first NUMIog messages.
--message (- m) MESSAGE

Indicates that you will specify either alog message or alock comment on the command line, following this option. For example:

$ svn conmmit -m "They don't nake Sunday."
--native-eol ARG

Causes svn export to use a specific end-of-line sequence as if it was the native sequence for the client platform. ARG may be
one of CR, LF, or CRLF.

--newARG
Uses ARG as the newer target (for use with svn diff).
- - no- aut o- pr ops

Disables auto-props, overriding the enabl e- aut o- pr ops directiveintheconfi g file.

235

Subversion Complete Reference

--no-di ff-del et ed

Prevents Subversion from printing differences for deleted files. The default behavior when you remove afile is for svn diff to
print the same differences that you would seeif you had left the file but removed all the content.

--no-ignore

Shows files in the status listing that would normally be omitted since they match a pattern in the gl obal -i gnor es
configuration option or thesvn: i gnor e property. Seethe section called “ Config” and the section called “Ignoring Unversioned
Items” for more information.

--no-unl ock

Tells Subversion not to automatically unlock files (the default commit behavior isto unlock all fileslisted as part of the commit).
See the section called “Locking” for more information.

--non-recursive (-N)

Deprecated. Stops a subcommand from recursing into subdirectories. Most subcommands recurse by default, but some do not.
Users should avoid this option and use the more precise - - dept h option instead. For most subcommands, specifying - - non-
recur si ve produces behavior which is the same as if you'd specified - - dept h=f i | es, but there are exceptions: non-
recursive svn status operates at thei medi at es depth, and the non-recursive forms of svn revert, svn add, and svn commit
operate at an enpt y depth.

--notice-ancestry

Pays attention to ancestry when cal culating differences.
--ol d ARG

Uses ARG as the ol der target (for use with svn diff).
--parents

Creates and adds nonexistent or nonversioned parent subdirectoriesto theworking copy or repository as part of an operation. This
isuseful for automatically creating multiple subdirectories where none currently exist. If performed on aURL, all the directories
will be created in a single commit.

--quiet (-q)

Requests that the client print only essential information while performing an operation.
--record-only

Marks revisions as merged, for use with - - r evi si on (- r).
--recursive (-R

Makes a subcommand recurse into subdirectories. Most subcommands recurse by default.
--reintegrate

Used with the svn mer ge subcommand, merges all of the source URL's changes into the working copy. See the section called
“Keeping aBranch in Sync” for details.

--rel ocate FROM TO [PATH. . .]

Used with the svn switch subcommand, changes the location of the repository that your working copy references. Thisis useful
if the location of your repository changes and you have an existing working copy that you'd like to continue to use. See svn
switch (sw) for more details and an example.

236

Subversion Complete Reference

--renmove ARG
Disassociates ARG from a changelist
--revision(-r) REV

Indicates that you're going to supply a revision (or range of revisions) for a particular operation. You can provide revision
numbers, keywords, or dates (in curly braces) as arguments to the revision option. If you wish to offer arange of revisions, you
can provide two revisions separated by a colon. For example:

svn log -r 1729

svn log -r 1729: HEAD

svn log -r 1729:1744

svn log -r {2001-12-04}:{2002-02-17}
svn log -r 1729:{2002-02-17}

@B P H BB

See the section called “ Revision Keywords® for more information.
--revprop

Operates on a revision property instead of a property specific to a file or directory. This option requires that you also pass a
revision with the - - r evi si on (- r) option.

--set-depth ARG

Sets the sticky depth on a directory in a working copy to one of excl ude, enpty,files,i medi ates,orinfinity.
For detailed coverage of what these mean and how to use this option, see the section called “ Sparse Directories’.

--show-revs ARG
Used to make svn mer geinfo display either mer ged or el i gi bl e revisions.
- -show updat es (- u)

Causesthe client to display information about which filesin your working copy are out of date. This doesn't actually update any
of your files—it just shows you which fileswill be updated if you then use svn update.

- - st op- on- copy

Causes a Subversion subcommand that traverses the history of aversioned resource to stop harvesting that historical information
when a copy—that is, a location in history where that resource was copied from another location in the repository—is
encountered.

--strict

Causes Subversion to use strict semantics, a notion that is rather vague unless talking about specific subcommands (hamely,
svn propget).

--sumari ze
Display only high-level summary notifications about the operation instead of its detailed outpuit.
--targets FI LENAME

Tells Subversion to read additional target paths for the operation from FI LENANME. FI LENAME should contain one path per line,
with each path expected to use the same encoding and formatting that it would if you had specified it directly as an argument
on the command line.

237

Subversion Complete Reference

--use-nerge-history (-g)
Uses or displays additional information from merge history.
--verbose (-v)

Requests that the client print out as much information as it can while running any subcommand. This may result in Subversion
printing out additional fields, detailed information about every file, or additional information regarding its actions.

--version

Printsthe client versioninfo. Thisinformation includes not only the version number of theclient, but also alisting of all repository
access modules that the client can use to access a Subversion repository. With - - qui et (- q) it prints only the version number
in a compact form.

--with-all-revprops

Used with the - - xm option to svn log, instructs Subversion to retrieve and display al revision properties—the standard ones
used internally by Subversion aswell as any user-defined ones—in the log output.

--wW t h-no-revprops

Used withthe- - xm optionto svn log, instructs Subversion to omit all revision properties—including the standard log message,
author, and revision datestamp—from the log output.

--with-revprop ARG

When used with any command that writes to the repository, sets the revision property, using the NAME=VAL UE format, NAME
to VALUE. When used with svn login - - xml mode, this displays the value of ARGin the log output.

--xm

Prints output in XML format.

svn Subcommands

Here are the various subcommands for the svn program. For the sake of brevity, we omit the global options (described in the section
called “svn Options’) from the subcommand descriptions which follow.

238

Subversion Complete Reference

Name

svn add — Add files, directories, or symbolic links.
Synopsis
svn add PATH...

Description

Schedule files, directories, or symbolic links in your working copy for addition to the repository. They will be uploaded and added
to the repository on your next commit. If you add something and change your mind before committing, you can unschedule the
addition using svn revert.

Options

- -aut o- props
--depth ARG
--force

- - no- aut o- pr ops
--no-ignore
--parents

--quiet (-q)
--targets FI LENAME

Examples

To add afile to your working copy:

$ svn add foo.c
A foo.c

When adding a directory, the default behavior of svn add isto recurse:

$ svn add testdir
A testdir
A testdir/a
A testdir/b
A testdir/c
A testdir/d

Y ou can add a directory without adding its contents:

$ svn add --depth=enpty otherdir
A ot herdir

Normally, the command svn add * will skip over any directories that are already under version control. Sometimes, however,
you may want to add every unversioned object in your working copy, including those hiding deeper. Passing the - - f or ce option
makes svn add recurse into versioned directories:

239

Subversion Complete Reference

$ svn add * --force

A foo.c

A sonedi r/ bar. c

A (bin) otherdir/docs/baz. doc

240

Subversion Complete Reference

Name

svn blame (praise, annotate, ann) — Show author and revision information inline for the specified files or URLSs.
Synopsis

svn bl ame TARGET[@REV] . ..

Description

Show author and revision information inline for the specified files or URLSs. Each line of text is annotated at the beginning with the
author (username) and the revision number for the last change to that line.

Options

--extensions (-x) ARG
--force

--increnental

--revision (-r) REV
--use-nmerge-history (-g)
--verbose (-v)

--xm

Examples

If you want to see blame-annotated source for r eadmne. t xt in your test repository:

$ svn blame http://svn.red-bean. com repos/test/readne.txt
3 sally This is a README file.
5 harry You should read this.

Even if svn blame says that Harry last modified r eadn®e. t xt in revision 5, you'll have to examine exactly what the revision
changed to be sure that Harry changed the context of the line—he may have adjusted just the whitespace.

If you usethe- - xm option, you can get XML output describing the blame annotations, but not the contents of the lines themselves:

$ svn blame --xm http://svn.red-bean. confrepos/test/readne.txt
<?xm version="1.0"7?>
<bl ane>
<t ar get
pat h="readne. t xt">
<entry
I i ne- nunber="1">
<conmmi t
revision="3">
<aut hor >sal | y</ aut hor >
<dat e>2008- 05- 25T19: 12: 31. 428953Z</ dat e>
</conm t >
</entry>
<entry
[i ne- nunber="2">
<conmmi t

241

Subversion Complete Reference

revision="5">
<aut hor >har r y</ aut hor >
<dat e>2008- 05- 29T03: 26: 12. 2931217</ dat e>
</ conmmi t >
</entry>
</target>
</ bl ame>

242

Subversion Complete Reference

Name

svn cat — Output the contents of the specified filesor URLSs.
Synopsis
svn cat TARGET[@REV] . ..

Description

Output the contents of the specified files or URLs. For listing the contents of directories, see svn list later in this chapter.

Options

--revision (-r) REV
Examples

If you want to view r eadne. t Xt inyour repository without checking it out:

$ svn cat http://svn.red-bean. conirepos/test/readne.txt
This is a READVE file.

You should read this.

$

If your working copy is out of date (or you have local modifications) and you want to see the HEAD revision of afile
@ in your working copy, svn cat -r HEAD FI LENAME will automatically fetch the HEAD revision of the specified path:

$ cat foo.c

This file is in ny local working copy

and has changes that |'ve nade.

$ svn cat -r HEAD foo.c

Latest revision fresh fromthe repository!
$

243

Subversion Complete Reference

Name

svn changelist (cl) — Associate (or deassociate) local paths with a changelist.
Synopsis
changel i st CLNAME TARCET. ..

changel i st --renmove TARCET...

Description

Used for dividing filesin aworking copy into a changelist (logical named grouping) in order to alow usersto easily work on multiple
file collections within a single working copy.

Options

--changel i st ARG
--depth ARG
--quiet (-q)
--recursive (-R
--renove
--targets FI LENAME

Example

Edit three files, add them to a changelist, then commit only filesin that changelist:

$ svn changelist issuel729 foo.c bar.c baz.c

Path 'foo.c' is now a nenber of changelist 'issuel729'.
Path '"bar.c' is now a nenber of changelist 'issuel729'.
Path 'baz.c' is now a nenber of changelist 'issuel729'.
$ svn status

A soneot herfile.c

A test/sonmetest.c

-- Changelist 'issuel729':

A foo.c

A bar. c

A baz. c

$ svn comit --changelist issuel729 -m"Fixing |ssue 1729."
Addi ng bar.c

Addi ng baz. c

Addi ng foo.c

Transmitting file data ...
Conmitted revision 2.
$ svn status

A soneot herfile.c
A test/sonetest.c
$

Note that in the previous example, only thefilesin changelist i ssuel1729 were committed.

244

Subversion Complete Reference

Name

svn checkout (co) — Check out aworking copy from arepository.
Synopsis

svn checkout URL[@REV]... [PATH

Description

Check out aworking copy from arepository. If PATHis omitted, the basename of the URL will be used as the destination. If multiple
URLSs are given, each will be checked out into a subdirectory of PATH, with the name of the subdirectory being the basename of
the URL.

Options

--depth ARG
--force
--ignore-externals
--quiet (-q)
--revision (-r) REV

Examples

Check out aworking copy into adirectory called ni ne:

$ svn checkout file:///var/svn/repos/test mne
A nm ne/ a

A nm ne/ b

A nm ne/c

A m ne/d

Checked out revision 20.

$1s

nm ne

$

Check out two different directories into two separate working copies:

$ svn checkout file:///var/svn/repos/test \
file:///var/svn/repos/quiz
A test/a

A test/b

A test/c

A test/d

Checked out revision 20.
A qui z/ 1

A qui z/ m

Checked out revision 13.
$1s

qui z test

$

245

Subversion Complete Reference

Check out two different directories into two separate working copies, but place both into a directory called wor ki ng- copi es:

$ svn checkout file:///var/svn/repos/test \
file:///lvar/svn/repos/quiz \
wor ki ng- copi es

wor ki ng- copi es/test/a

wor ki ng- copi es/test/b

wor ki ng- copi es/test/c

wor ki ng- copi es/test/d

Checked out revision 20.

>>r>r>

A wor ki ng- copi es/ qui z/ |
A wor ki ng- copi es/ qui z/ m
Checked out revision 13.
$1s

wor ki ng- copi es

If you interrupt a checkout (or something else interrupts your checkout, such asloss of connectivity, etc.), you can restart it either by
issuing the identical checkout command again or by updating the incomplete working copy:

$ svn checkout file:///var/svn/repos/test mne

A m ne/ a
A m ne/ b
AC

svn: The operation was interrupted

svn: caught SI G NT

$ svn checkout file:///var/svn/repos/test mne
A nne/c

"NC

svn: The operation was interrupted

svn: caught SI G NT

$ svn update nine

A m ne/d
Updated to revision 20.
$

If you wish to check out some revision other than the most recent one, you can do so by providing the - - r evi si on (- r) option
to the svn checkout command:

$ svn checkout -r 2 file:///var/svn/repos/test mne

A m ne/ a
Checked out revision 2.
$

Subversion will complain by default if you try to check out adirectory atop an existing directory which containsfilesor subdirectories
that the checkout itself would have created. Use the - - f or ce option to override this safeguard. When you check out with the
- - f or ce option, any unversioned file in the checkout target tree which ordinarily would obstruct the checkout will still become
versioned, but Subversion will preserve its contents as-is. If those contents differ from the repository file at that path (which was
downloaded as part of the checkout), the filewill appear to have local modifications—the changes required to transform the versioned
file you checked out into the unversioned file you had before checking out—when the checkout compl etes.

$ nkdir project

246

Subversion Complete Reference

$ nkdir project/lib
$ touch project/lib/file.c
$ svn checkout file:///var/svn/repos/project/trunk project
svn: Failed to add directory 'project/lib": an unversioned directory of the sa
me nane al ready exists
$ svn checkout file:///var/svn/repos/project/trunk project --force
project/lib
project/lib/subdir
project/lib/file.c
project/lib/anotherfile.c
proj ect/incl ude/ header. h
ecked out revision 21
svn status wc
project/lib/file.c
$ svn diff we
Index: project/lib/file.c

EeQr>rm>m

--- project/lib/file.c (revision 1)

+++ project/lib/file.c (working copy)

@-3 +0,0 @@

-/* file.c: Code for acting file-ishly. */

- #i ncl ude <stdio. h>

-/* Not feeling particularly creative today. */

$

As in another other working copy, you have the choices typically available: reverting some or al of those local “modifications’,
committing them, or continuing to modify your working copy.

This feature is especialy useful for performing in-place imports of unversioned directory trees. By first importing the tree into
the repository, and then checking out new repository location atop the unversioned tree with the - - f or ce option, you effectively
transform the unversioned tree into aworking copy.

$ svn nkdir -m"Create newproject project root." \
file://var/svn/repos/ newproj ect

$ svn inmport -m"lnport initial newproject codebase." newproject \
file://var/svn/repos/ newproject/trunk

Addi ng newpr oj ect/i ncl ude

Addi ng newpr oj ect/i ncl ude/ newpr oj ect. h
Addi ng newproject/lib

Addi ng newpr oj ect/1i b/ hel pers.c

Addi ng newpr oj ect/1i b/ base. c

Addi ng newpr oj ect/ not es

Addi ng newpr oj ect/ not es/ READVE

Conmitted revision 22.

$ svn checkout file:// pwd /repos-1.6/newproject/trunk newproject --force
newpr oj ect/i ncl ude

newpr oj ect/i ncl ude/ newproj ect. h

newproject/lib

newpr oj ect/1i b/ hel pers.c

newpr oj ect/1i b/ base. c

newpr oj ect/ not es

mmmimimim

247

Subversion Complete Reference

E newpr oj ect/ not es/ READVE
Checked out revision 2.

$ svn status newproj ect

$

248

Subversion Complete Reference

Name

svn cleanup — Recursively clean up the working copy
Synopsis
svn cl eanup [PATH...]

Description

Recursively clean up theworking copy, removing working copy locksand resuming unfinished operations. If you ever getawor ki ng
copy | ocked error, run this command to remove stale locks and get your working copy into a usable state again.

If, for some reason, an svn update fails due to a problem running an external diff program (e.g., user input or network failure), pass
the- - di f f 3- cnd to allow the cleanup process to complete any required merging using your external diff program. You can also
specify any configuration directory with the - - conf i g- di r option, but you should need these options extremely infrequently.

Options

--diff3-cnd CVD

Examples

Well, there's not much to the examples here, as svn cleanup generates no output. If you pass no PATH, then “. ” isused:

$ svn cl eanup
$ svn cl eanup /var/svn/worki ng- copy

249

Subversion Complete Reference

Name

svn commit (ci) — Send changes from your working copy to the repository.
Synopsis

svn conmit [PATH...]

Description

Send changes from your working copy to the repository. If you do not supply alog message with your commit by using either the
--file(-F)or--nessage (- m option, svn will launch your editor for you to compose a commit message. See the edi t or -
cd list entry in the section called “ Config”.

svn commit will send any lock tokens that it finds and will release locks on all PATHs committed (recursively) unless - - no-
unl ock is passed.

committing your changes. If you want to cancel your commit, just quit your editor without saving your commit message

If you begin acommit and Subversion launches your editor to compose the commit message, you can still abort without
Q/J and Subversion will prompt you to either abort the commit, continue with no message, or edit the message again.

Options

--changel i st ARG
--depth ARG
--editor-cnd CMVD
--encodi ng ENC
--file (-F) FILENAME
--force-1o0g

- -keep-changel i sts
--nmessage (-n) MESSAGE
- - no- unl ock

--quiet (-q)
--targets FlI LENAME
--with-revprop ARG

Examples

Commit asimple modification to afile with the commit message on the command line and an implicit target of your current directory

$ svn conmit -m "added howto section."
Sendi ng a

Transmitting file data .

Committed revision 3.

Commit amodification to thefilef 0o. ¢ (explicitly specified on the command line) with the commit message in afile named nsg:
$ svn commit -F nsg foo.c

Sendi ng foo.c
Transmitting file data .

250

Subversion Complete Reference

Conmmi tted revision 5.

If you want to use afile that's under version control for your commit messagewith- - fi | e (- F), you need to passthe- - f or ce-
| og option:

$ svn conmit -F file_under_vc.txt foo.c
svn: The | og nessage file is under version control
svn: Log nessage file is a versioned file; use '--force-log'" to override

$ svn commit --force-log -F file_under_vc.txt foo.c
Sendi ng foo.c

Transnmitting file data .

Conmmitted revision 6.

To commit afile scheduled for deletion:

$ svn conmmit -m"renoved file 'c'.

Del eti ng c

Conmitted revision 7.

251

Subversion Complete Reference

Name

svn copy (cp) — Copy afile or directory in aworking copy or in the repository.
Synopsis

svn copy SRC| @GREV]... DST

Description

Copy one or more filesin aworking copy or in the repository. SRC and DST can each be either aworking copy (WC) path or URL.
When copying multiple sources, add the copies asimmediate children of DST (which, of course, must be a directory).

WC _ WC
Copy and schedule an item for addition (with history).
WC _, URL
Immediately commit a copy of WC to URL.
URL _ WC
Check out URL into WC and schedule it for addition.
URL _ URL
Complete server-side copy. Thisis usually used to branch and tag.

If no peg revision (i.e.,, @REV) is supplied, by default the BASE revision will be used for files copied from the working copy, while
the HEAD revision will be used for files copied from a URL.

: You can only copy fileswithin asingle repository. Subversion does not support cross-repository copying.

Options

--editor-cnd CVMD
--encodi ng ENC

--file (-F) FILENAMVE
--force-1og
--ignore-externals
--message (-nm) MESSAGE
--parents

--quiet (-q)
--revision (-r) REV
--with-revprop ARG

Examples

Copy an item within your working copy (this schedules the copy—nothing goes into the repository until you commit):

252

Subversion Complete Reference

$ svn copy foo.txt bar.txt
A bar . t xt

$ svn status

A + bar . t xt

Copy severd filesin aworking copy into a subdirectory:

$ svn copy bat.c baz.c qux.c src

A src/ bat.c
A src/ baz.c
A src/ qux. ¢

Copy revision 8 of bat . ¢ into your working copy under a different name:

$ svn copy -r 8 bat.c ya-old-bat.c
A ya-ol d-bat.c

Copy anitem in your working copy to aURL in therepository (thisisan immediate commit, so you must supply acommit message):

$ svn copy near.txt file:///var/svn/repos/test/far-away.txt -m"Renote copy."

Conmitted revision 8.

Copy an item from the repository to your working copy (this just schedules the copy—nothing goes into the repository until you
commit):

$ svn copy file:///var/svn/repos/test/far-away -r 6 near-here
A near - here

o Thisisthe recommended way to resurrect a dead file in your repository!

And finally, copy between two URLS:

$ svn copy file:///var/svn/repos/test/far-away \
file:///var/svn/repos/test/over-there -m"renote copy."

Committed revision 9.

$ svn copy file:///var/svn/repos/test/trunk \
file://lvar/svn/repos/test/tags/0.6.32-prerelease -m"tag tree"

Committed revision 12.

This is the easiest way to “tag” a revision in your repository—just svn copy that revision (usually HEAD) into your
Q/J t ags directory.

And don't worry if you forgot to tag—yYyou can always specify an older revision and tag anytime:

253

Subversion Complete Reference

$ svn copy -r 11 file:///var/svn/repos/test/trunk \
file:///var/svn/repos/test/tags/0.6.32-prerel ease \
-m"Forgot to tag at rev 11"

Committed revision 13.

254

Subversion Complete Reference

Name

svn delete (del, remove, rm) — Delete an item from a working copy or the repository.
Synopsis
svn del ete PATH...

svn delete URL...
Description

Items specified by PATH are scheduled for deletion upon the next commit. Files (and directories that have not been committed)
are immediately removed from the working copy unless the - - keep- 1 ocal option is given. The command will not remove any
unversioned or modified items; use the - - f or ce option to override this behavior.

Items specified by URL are deleted from the repository via an immediate commit. Multiple URLs are committed atomically.

Options

--editor-cnd CMVD
--encodi ng ENC

--file (-F) FILENAME
--force

--force-1og

- -keep- 1 ocal

--message (-n) MESSAGE
--quiet (-q)

--targets FI LENAME
--with-revprop ARG

Examples

Using svn to delete afile from your working copy deletes your local copy of the file, but it merely schedules the file to be deleted
from the repository. When you commit, the file is deleted in the repository.

$ svn delete nyfile

D nyfile

$ svn commit -m"Deleted file "'nyfile' ."

Del eti ng nyfile

Transnmitting file data .

Conmitted revision 14.

Deleting a URL, however, isimmediate, so you have to supply alog message:

$ svn delete -m"Deleting file "yourfile' " \
file:///lvar/svn/repos/test/yourfile

Commi tted revision 15.

Here's an example of how to force deletion of afile that has local mods:

255

Subversion Complete Reference

$ svn delete over-there

svn: Attenpting restricted operation for nodified resource
svn: Use --force to override this restriction

svn: 'over-there' has local nodifications

$ svn delete --force over-there
D over-there

Usethe- - keep-1 ocal option to override the default svn delete behavior of also removing the target file that was scheduled for
versioned deletion. Thisis helpful when you realize that you've accidentally committed the addition of afile that you need to keep
around in your working copy, but which shouldn't have been added to version control.

$ svn del ete --keep-local conf/program conf
D conf/ program conf

$ svn conmit -m "Renove accidentally-added configuration file."
Del eti ng conf/ program conf

Transnmitting file data .

Conmitted revision 21.

$ svn status

? conf/ program conf

$

256

Subversion Complete Reference

Name

svn diff (di) — This displays the differences between two revisions or paths.

Synopsis

diff [-c M| -r N.:M] [TARGET[@REV]...]

diff [-r N[:M] --ol d=OLD- TGI[@)LDREV] [--new=NEW TGI[GNEWREV]] [PATH...]

di ff OLD- URL[@LDREV] NEW URL[@GNEWREV]

Description
Display the differences between two paths. Y ou can use svn diff in the following ways:
» Usejust svn diff to display local modificationsin aworking copy.

« Display the changes made to TARGETSs as they are seen in REV between two revisions. TARGETSs may be al working copy paths
or all URLs. If TARGETSs are working copy paths, N defaults to BASE and Mto the working copy; if TARGETs are URLs, N must
be specified and Mdefaultsto HEAD. The- ¢ Moptionisequivaentto-r N:. MwhereN = M 1. Using- ¢ - Mdoesthe reverse:
-r M NwhereN = M 1.

 Display the differences between OLD- TGT asit was seenin CLDREV and NEW TGT asit was seen in NEWREV. PATHE, if given,
are relative to OLD- TGT and NEW TGT and restrict the output to differences for those paths. OLD- TGT and NEW TGT may be
working copy paths or URL[@GREV] . NEW TGT defaultsto OLD- TGT if not specified. -r N makes OLDREV default to N; - r
N: Mmakes CLDREV default to N and NEVREV default to M

svn di ff OLD- URL[@LDREV] NEW URL[@GNEWREV] isshorthand for svn di ff --ol d=0OLD- URL[@LDREV] - -
new=NEW URL[@GNEVREV] .

svn diff -r N M URL isshorthandforsvn diff -r N: M --o0ol d=URL --new=URL.
svn diff [-r NN:M] URLL[@ URL2[@ isshorthandforsvn di ff [-r N[: M] --old=URL1 --new=URL2.

If TARCET is a URL, then revs N and Mcan be given either viathe - - r evi si on (- r) option or by using the “@" notation as
described earlier.

If TARGET isaworking copy path, the default behavior (whenno- - r evi si on (- r) option isprovided) isto display the differences
between the base and working copies of TARGET. If a- - r evi si on (- r) option is specified in this scenario, though, it means:

--revision NM

The server compares TARGET@N and TARGET@M
--revision N

The client compares TARGET @N against the working copy.

If the alternate syntax is used, the server compares URL1 and URL2 at revisions N and M respectively. If either N or Mis omitted,
avalue of HEAD is assumed.

By default, svn diff ignores the ancestry of files and merely compares the contents of the two files being compared. If you use - -
noti ce- ancest ry, the ancestry of the paths in question will be taken into consideration when comparing revisions (i.e., if you
run svn diff on two files with identical contents but different ancestry, you will see the entire contents of the file as having been
removed and added again).

257

Subversion Complete Reference

Options

--change (-c) ARG
--changel i st ARG
--depth ARG
--diff-cnd CVD
--extensions (-x) ARG
--force

--new ARG
--no-diff-deleted
--notice-ancestry
--old ARG
--revision (-r) ARG
--sunmari ze

--xm

Examples

Compare BASE and your working copy (one of the most popular uses of svn diff):

$ svn di ff COW TTERS
I ndex: COWM TTERS

--- COW TTERS (revision 4404)
+++ COW TTERS (wor ki ng copy)

See what changed in the file COMM TTERS revision 9115:

$ svn diff -c 9115 COW TTERS
I ndex: COWM TTERS

--- COW TTERS (revision 3900)
+++ COW TTERS (wor ki ng copy)

See how your working copy's modifications compare against an older revision:;

$ svn diff -r 3900 COW TTERS
I ndex: COWM TTERS

--- COW TTERS (revision 3900)
+++ COW TTERS (wor ki ng copy)

Compare revision 3000 to revision 3500 using “ @" syntax:

$ svn diff http://svn.collab.net/repos/svn/trunk/ COWM TTERS@O000 \
http://svn.col |l ab. net/repos/svn/trunk/ COM TTERS@500
| ndex: COWM TTERS

--- COW TTERS (revision 3000)
+++ COWM TTERS (revision 3500)

258

Subversion Complete Reference

Compare revision 3000 to revision 3500 using range notation (pass only the one URL in this case):

$ svn diff -r 3000:3500 http://svn.collab. net/repos/svn/trunk/ COWM TTERS
I ndex: COWM TTERS

--- COW TTERS (revision 3000)
+++ COW TTERS (revisi on 3500)

Compare revision 3000 to revision 3500 of all thefilesint r unk using range notation:

$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk

Compare revision 3000 to revision 3500 of only threefilesint r unk using range notation:

$ svn diff -r 3000:3500 --old http://svn.collab. net/repos/svn/trunk \
COW TTERS README HACKI NG

If you have aworking copy, you can obtain the differences without typing in the long URLS:

$ svn diff -r 3000: 3500 COW TTERS
| ndex: COW TTERS

--- COW TTERS (revision 3000)
+++ COW TTERS (revisi on 3500)

Use--di ff-cnd CVMD- - ext ensi ons (- x) to pass arguments directly to the external diff program:

$ svn diff --diff-cnd /usr/bin/diff -x "-i -b" COW TTERS
| ndex: COWM TTERS

Oal, 2

> This is a test

>

Lastly, you can use the - - xnml option along with the - - summar i ze option to view XML describing the changes that occurred
between revisions, but not the contents of the diff itself:

$ svn diff --summarize --xm http://svn.red-bean. comrepos/test@2 \
http://svn. red-bean. com repos/test
<?xm version="1.0"?>

<di ff>

<pat hs>

<pat h
props="none"
ki nd="file"

item="nodi fied">http://svn.red-bean. com repos/test/sandw ch.t xt </ pat h>

259

Subversion Complete Reference

<pat h
props="none"
ki nd="file"
item="del eted">http://svn.red-bean.con repos/test/burrito.txt</path>
<pat h
props="none"
ki nd="dir"
i tem="added" >http://svn. red-bean. com repos/test/snacks</pat h>
</ pat hs>
</diff>

260

Subversion Complete Reference

Name

svn export — Export a clean directory tree.

Synopsis

svn export [-r REV] URL[@PEGREV] [PATH|
svn export [-r REV] PATHL[@PEGREV] [PATHZ2]
Description

Thefirst form exports a clean directory tree from the repository specified by URL—at revision REV if it is given; otherwise, at HEAD,
into PATH. If PATH is omitted, the last component of the URL is used for the local directory name.

The second form exports a clean directory tree from the working copy specified by PATH1 into PATH2. All local changes will be
preserved, but files not under version control will not be copied.

Options

--depth ARG
--force
--ignore-externals
--native-eol ECL
--quiet (-q)
--revision (-r) REV

Examples

Export from your working copy (doesn't print every file and directory):

$ svn export a-wc ny-export
Export conpl ete.

Export directly from the repository (prints every file and directory):

$ svn export file:///var/svn/repos ny-export
A my-export/test
A nmy-export/ qui z

Exported revision 15.

When rolling operating-system-specific rel ease packages, it can be useful to export atree that uses a specific EOL character for line
endings. The - - nat i ve- eol option will do this, but it affects only files that have svn: eol -styl e = nati ve properties
attached to them. For example, to export atree with all CRLF line endings (possibly for aWindows. zi p file distribution):

$ svn export file:///var/svn/repos nmy-export --native-eol CRLF
A my- export/test
A my- export/ qui z

Exported revision 15.

261

Subversion Complete Reference

You can specify LR, CR, or CRLF asaline-ending type withthe- - nat i ve- eol option.

262

Subversion Complete Reference

Name
svn help (h, ?) — Help!

Synopsis

svn hel p [SUBCOMWAND. . .]

Description

Thisisyour best friend when you're using Subversion and this book isn't within reach!
Options

None

263

Subversion Complete Reference

Name

svn import — Commit an unversioned file or tree into the repository.
Synopsis

svn inport [PATH URL

Description

Recursively commit a copy of PATHto URL. If PATHis omitted, “. ” is assumed. Parent directories are created in the repository as
necessary. Unversionable items such as device files and pipes areignored even if - - f or ce is specified.

Options

- - aut o- props
--depth ARG
--editor-cnd CMVMD
--encodi ng ENC
--file (-F) FILENAMVE
--force

--force-1og
--nmessage (-n) MESSAGE
- - no- aut o- props
--no-ignore

--quiet (-q)
--with-revprop ARG

Examples

Thisimportsthe local directory mypr oj intot r unk/ m sc inyour repository. The directory t r unk/ mi sc need not exist before
you import into it—svn import will recursively create directories for you.

$ svn inport -m"New inport" nyproj \
http://svn.red-bean. com repos/trunk/n sc
Addi ng nmypr oj / sanpl e. t xt

Transmitting file data
Comritted revision 16.

Be aware that this will not create a directory named mypr oj in the repository. If that's what you want, ssimply add nypr oj to the
end of the URL.:

$ svn inport -m"New inport" nyproj \
http://svn. red-bean. com repos/trunk/ m sc/ nypr oj
Addi ng nmypr oj / sanpl e. t xt

Transmitting file data
Conmitted revision 16.

After importing data, note that the original treeis not under version control. To start working, you still need to svn checkout afresh
working copy of the tree.

264

Subversion Complete Reference

Name

svn info — Display information about alocal or remote item.
Synopsis

svn info [TARGET[@REV] . . .]

Description

Print information about the working copy paths or URL s specified. The information displayed for each path may include (as pertinent
to the object at that path):

« information about the repository in which the object is versioned

« the most recent commit made to the specified version of the object
 any user-level locks held on the object

* local scheduling information (added, deleted, copied, etc.)

* |ocal conflict information

Options

--changel i st ARG
--depth ARG
--increnental
--recursive (-R
--revision (-r) REV
--targets FI LENAME
--xn

Examples

svn info will show you all the useful information that it has for itemsin your working copy. It will show information for files:

$ svn info foo.c

Pat h: foo.c

Nane: foo.c

URL: http://svn.red-bean.com repos/test/foo.c

Repository Root: http://svn.red-bean.com repos/test

Repository UU D: 5e7d134a- 54f b- 0310- bd04- b611643e5c25

Revi si on: 4417

Node Kind: file

Schedul e: nor nal

Last Changed Author: sally

Last Changed Rev: 20

Last Changed Date: 2003-01-13 16:43:13 -0600 (Mn, 13 Jan 2003)
Text Last Updated: 2003-01-16 21:18:16 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-13 21:50:19 -0600 (Mn, 13 Jan 2003)
Checksum d6aeb60b0662ccceb6bcedbac344ch66

265

Subversion Complete Reference

It will also show information for directories:

$ svn info vendors

Pat h: vendors

URL: http://svn.red-bean. com repos/test/vendors

Repository Root: http://svn.red-bean.com repos/test

Repository UU D: 5e7dl134a- 54f b- 0310- bd04- b611643e5c25

Revi sion: 19

Node Kind: directory

Schedul e: nor nal

Last Changed Author: harry

Last Changed Rev: 19

Last Changed Date: 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-16 23:39:02 -0600 (Thu, 16 Jan 2003)

svn info also acts on URLs (also note that the filer eadne. doc in thisexampleislocked, so lock information is also provided):

$ svn info http://svn.red-bean. confrepos/test/readnme. doc

Pat h: readne. doc

Nane: readne. doc

URL: http://svn.red-bean.conm repos/test/readne. doc

Repository Root: http://svn.red-bean.com repos/test

Repository UU D: 5e7d134a- 54f b- 0310- bd04- b611643e5c25

Revision: 1

Node Kind: file

Schedul e: nor nal

Last Changed Author: sally

Last Changed Rev: 42

Last Changed Date: 2003-01-14 23:21:19 -0600 (Tue, 14 Jan 2003)
Lock Token: opaquel ockt oken: 14011d4b- 54f b- 0310- 8541- dbd16bd471b2
Lock Omner: harry

Lock Created: 2003-01-15 17:35:12 -0600 (Wed, 15 Jan 2003)

Lock Comment (1 line):

My test |ock coment

Lastly, svn info output is availablein XML format by passing the - - xm option:

$ svn info --xm http://svn.red-bean. conirepos/test
<?xm version="1.0"?>
<i nf 0>
<entry

ki nd="dir"

pat h="."

revision="1">
<url>http://svn.red-bean. comrepos/test</url>
<repository>
<root >http://svn.red-bean. confrepos/test</root>
<uui d>5e7d134a- 54f b- 0310- bd04- b611643e5c25</ uui d>
</repository>
<we- i nf o>
<schedul e>nor mal </ schedul e>
<dept h>i nfi ni ty</ dept h>

266

Subversion Complete Reference

</ wec-i nf o>
<commi t
revision="1">
<aut hor >sal | y</ aut hor >
<dat €>2003- 01- 15T23: 35: 12. 847647Z</ dat e>
</comit>
</entry>
</i nf o>

267

Subversion Complete Reference

Name

svn list (Is) — List directory entriesin the repository.
Synopsis

svn list [TARGET[@REV]...]
Description

List each TARGET file and the contents of each TARGET directory asthey exist in therepository. If TARGET isaworking copy path,
the corresponding repository URL will be used.

The default TARGET is*“. ", meaning the repository URL of the current working copy directory.
With - - ver bose (- v), svn list shows the following fields for each item:
* Revision number of the last commit

Author of the last commit

If locked, the letter “O” (see the preceding section on svn info for details).

Size (in bytes)
» Date and time of the last commit

With- - xm , outputisin XML format (with aheader and an enclosing document element unless- - i ncr enent al isalso specified).
All of theinformation is present; the - - ver bose (- v) option is not accepted.

Options

--depth ARG
--increnental
--recursive (-R
--revision (-r) REV
--verbose (-v)
--xm

Examples

svn list ismost useful if you want to see what files arepository has without downloading aworking copy:

$ svn list http://svn.red-bean. con repos/test/support
README. t xt

| NSTALL

exanpl es/

You can passthe - - ver bose (- v) option for additional information, rather like the Unix command Is-I:

$ svn list -v file:///var/svn/repos
16 sally 28361 Jan 16 23: 18 README. t xt

268

Subversion Complete Reference

27 sally 0 Jan 18 15:27 | NSTALL
24 harry Jan 18 11: 27 exanpl es/

You can also get svn list output in XML format with the - - xni option:

$ svn list --xm http://svn.red-bean. conirepos/test
<?xm version="1.0"?>

<lists>
<list

pat h="htt p://svn. red-bean. conf repos/test">
<entry

ki nd="dir">

<name>exanpl es</ nanme>
<si ze>0</si ze>
<commi t
revision="24">
<aut hor >harry</ aut hor >
<dat €>2008- 01- 18T06: 35: 53. 048870Z</ dat e>
</ conmi t >
</entry>
</list>
</lists>

For further details, see the earlier section the section called “svn list”.

269

Subversion Complete Reference

Name

svn lock — Lock working copy paths or URLs in the repository so that no other user can commit changes to them.
Synopsis

svn | ock TARCET...

Description

Lock each TARGET. If any TARGET isaready locked by another user, print awarning and continue locking the rest of the TARGETS.
Use- - f or ce to steal alock from another user or working copy.

Options

--encodi ng ENC

--file (-F) FILENAME
--force

--force-1og

--nmessage (-n) MESSAGE
--targets FILENAVE

Examples

Lock two filesin your working copy:

$ svn lock tree.jpg house.jpg
"tree.jpg’ |ocked by user 'harry'.
"house. jpg' locked by user 'harry'.

Lock afilein your working copy that is currently locked by another user:

$ svn lock tree.jpg
svn: warning: Path '/tree.jpg is already |ocked by user '"sally in \
filesystem'/var/svn/repos/db'

$ svn lock --force tree.jpg
"tree.jpg" |ocked by user 'harry'.

Lock afile without aworking copy:

$ svn lock http://svn.red-bean.com repos/test/tree.jpg
"tree.jpg' |ocked by user 'harry'.

For further details, see the section called “Locking”.

270

Subversion Complete Reference

Name
svn log — Display commit log messages.

Synopsis
svn | og [PATH|

svn | og URL[@REV] [PATH...]
Description

Shows log messages from the repository. If no arguments are supplied, svn log shows the log messages for all files and directories
inside (and including) the current working directory of your working copy. You can refine the results by specifying a path, one or
more revisions, or any combination of the two. The default revision range for alocal path is BASE: 1.

If you specify a URL alone, it prints log messages for everything the URL contains. If you add paths past the URL, only messages
for those paths under that URL will be printed. The default revision range for aURL isHEAD: 1.

With- - ver bose (- v), svn log will also print all affected paths with each log message. With - - qui et (- q), svn log will not print
the log message body itself, thisis compatible with - - ver bose (- v).

Each log message is printed just once, even if more than one of the affected paths for that revision were explicitly requested. Logs
follow copy history by default. Use- - st op- on- copy to disable this behavior, which can be useful for determining branch points.

Options

--change (-c) ARG
--increnental
--limt (-1) NUM
--quiet (-q)
--revision (-r) REV
- -stop-on-copy
--targets FlI LENAME
--use-nerge-history (-9)
--verbose (-v)
--with-all-revprops
--Wi th-no-revprops
--with-revprop ARG
--xm

Examples

Y ou can see the log messages for all the paths that changed in your working copy by running svn | og from the top:

$ svn | og

r20 | harry | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

r17 | sally | 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003) | 2 |ines

271

Subversion Complete Reference

Examine all log messages for a particular file in your working copy:

$ svn log foo.c

r32 | sally | 2003-01-13 00:43:13 -0600 (Mn, 13 Jan 2003) | 1 line

Added defi nes.

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
If you don't have aworking copy handy, you can log a URL:

$ svn log http://svn.red-bean. conlrepos/test/foo.c

r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defi nes.

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
If you want several distinct paths underneath the same URL, you can usethe URL [PATH. . .] syntax:

$ svn log http://svn.red-bean.confrepos/test/ foo.c bar.c

r32 | sally | 2003-01-13 00:43:13 -0600 (Mn, 13 Jan 2003) | 1 line

Added defi nes.

r31 | harry | 2003-01-10 12:25:08 -0600 (Fri, 10 Jan 2003) | 1 line

Added new file bar.c

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

The - - ver bose (- v) option causes svn log to include information about the paths that were changed in each displayed revision.
These paths appear, one path per line of output, with action codes that indicate what type of change was made to the path.

$ svn log -v http://svn.red-bean. comrepos/test/ foo.c bar.c

r32 | sally | 2003-01-13 00:43:13 -0600 (Mn, 13 Jan 2003) | 1 line
Changed pat hs:
M/foo.c

Added defi nes.
r31 | harry | 2003-01-10 12:25:08 -0600 (Fri, 10 Jan 2003) | 1 line
Changed pat hs:

A /bar.c

272

Subversion Complete Reference

Added new file bar.c

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

svn log uses just a handful of action codes, and they are similar to the ones the svn update command uses:
A

Theitem was added.
The item was deleted.
Properties or textual contents on the item were changed.

Theitem was replaced by a different one at the same location.

In addition to the action codes which precede the changed paths, svn log with the - - ver bose (- v) option will note whether a
path was added or replaced as the result of a copy operation. It does so by printing (f r om COPY- FROM PATH: COPY- FROM
REV) after such paths.

When you're concatenating the results of multiple callsto thelog command, you may want to usethe- - i ncr enent al option. svn
log normally prints out a dashed line at the beginning of alog message, after each subsequent log message, and following the fina
log message. If you ran svn log on arange of two revisions, you would get this:

$ svn log -r 14:15

However, if you wanted to gather two nonsequential log messages into afile, you might do something like this:

$ svn log -r 14 > nyl og
$ svn log -r 19 >> nyl og
$ svn log -r 27 >> nylog
$ cat nylog

273

Subversion Complete Reference

Y ou can avoid the clutter of the double dashed lines in your output by using the - - i ncr erent al option:

$ svn log --increnental -r 14 > nyl og
$ svn log --increnmental -r 19 >> nyl og
$ svn log --increnmental -r 27 >> nyl og
$ cat myl og

The--i ncrenent al option provides similar output control when using the - - xm option:

$ svn log --xm --incremental -r 1 sandw ch.txt
<l ogentry

revision="1">
<aut hor >har ry</ aut hor >
<dat e>2008- 06- 03T06: 35: 53. 048870Z</ dat e>
<nsg>lnitial |nport.</nsg>
</l ogentry>

Sometimes when you run svn log on a specific path and a specific revision, you see no log information output at all,
D asin the following:

$ svn log -r 20 http://svn.red-bean. conl unt ouched. t xt

That just means the path wasn't modified in that revision. To get log information for that revision, either run the log
operation against the repository's root URL, or specify a path that you happen to know was changed in that revision:

$ svn log -r 20 touched. txt

r20 | sally | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

Made a change.

274

Subversion Complete Reference

Name

svn merge — Apply the differences between two sources to aworking copy path.
Synopsis

svn nerge sourceURL1[@N] sourceURL2[@1 [WCPATH]

svn merge sour ceWCPATHL@N sour ceWCPATH2@ [WCPATH]

svn merge [[-c M... | [-r NM...] [SOURCEf @REV] [WCPATH]]
Description

Inthefirst form, the source URL s are specified at revisions Nand M These are the two sources to be compared. The revisions default
to HEAD if omitted.

In the second form, the URLSs corresponding to the source working copy paths define the sources to be compared. The revisions
must be specified.

Inthethird form, SOURCE can be either aURL or aworking copy path (in which caseits corresponding URL isused). If not specified,
SOURCE will bethe same as WCPATH. SOURCE inrevision REV iscompared asit existed between revisions N and Mfor each revision
range provided. If REV is not specified, HEAD is assumed.

-Cc Misequivalentto-r <M 1> Mand-c - Mdoesthereverse:-r M <M 1>. If no revision ranges are specified, the default
range of 1: HEAD is used. Multiple - ¢ and/or - r instances may be specified, and mixing of forward and reverse rangesis allowed
—the ranges are internally compacted to their minimum representation before merging begins (which may result in no-op).

WCPATH is the working copy path that will receive the changes. If WCPATH is omitted, a default value of “. ” is assumed, unless the
sources have identical basenames that match afile within “. ”. In this case, the differences will be applied to that file.

Subversion will internally track metadata about the merge operation only if the two sources are ancestrally related—if the first source
is an ancestor of the second or vice versa. This is guaranteed to be the case when using the third form. Unlike svn diff, the merge
command takes the ancestry of a file into consideration when performing a merge operation. This is very important when you're
merging changes from one branch into another and you've renamed a file on one branch but not the other.

Options

--accept ACTION
--change (-c¢) REV
--depth ARG
--diff3-cmd CVMD
--dry-run
--extensions (-x) ARG
--force
--ignore-ancestry
--quiet (-q)
--record-only
--reintegrate
--revision (-r) REV

Examples

Merge a branch back into the trunk (assuming that you have an up-to-date working copy of the trunk):

275

Subversion Complete Reference

$ svn merge --reintegrate \
http://svn. exanpl e. coni repos/ cal ¢/ branches/ ny- cal c- branch
--- Merging differences between repository URLs into '.":
U button.c
] i nteger.c
U Makefile
U

$ # build, test, verify,

$ svn conmit -m "Merge ny-cal c-branch back into trunk!"
Sendi ng

Sendi ng button.c
Sendi ng i nteger.c
Sendi ng Makefil e

Transmitting file data ..
Committed revision 391.

To merge changesto asinglefile:
$ cd nyproj

$ svn nerge -r 30:31 thhgttg. txt
U thhgttg.txt

276

Subversion Complete Reference

Name

svn mergeinfo — Query merge-related information. See the section called “Mergeinfo and Previews’ for details.
Synopsis

svn mergei nfo SOURCE_URL[@REV] [TARGET[@REV]]

Description

Query information related to merges (or potential merges) between SOURCE- URL and TARCET. If the - - show- r evs option is
not provided, display revisions which have been merged from SOURCE- URL to TARCGET. Otherwise, display either ner ged or
el i gi bl e revisions as specified by the - - show- r evs option.

Options

--revision (-r) REV
--showrevs ARG

Examples

Find out which changesets your have been merged from your trunk directory into your test branch:

$ svn propget svn:nergei nfo ~/ branches/test

/ branches/ ot her: 3-4

/trunk:11-13, 14, 16

$ svn nmergeinfo --showrevs nerged "~/ trunk ~/ branches/test
ril

riz

ris

ri4

rie

$

Note that the default output from the svn mer geinfo command is to display merged revisions, so the - - show- r evs option shown
in the command line of the previous exampleis not strictly required.

Find out which changesets from your trunk directory have not yet been merged into your test branch:

$ svn nmergeinfo --showrevs eligible ~/trunk "/ branches/test
ris

ri7z

r20

r21

r22

$

277

Subversion Complete Reference

Name

svn mkdir — Create a new directory under version control.
Synopsis
svn nkdir PATH. ..

svn nkdir URL...

Description

Create a directory with a name given by the final component of the PATH or URL. A directory specified by aworking copy PATH
is scheduled for addition in the working copy. A directory specified by a URL is created in the repository via an immediate commit.
Multiple directory URLs are committed atomically. In both cases, all the intermediate directories must aready exist unless the - -

par ent s option is used.

Options

--editor-cnd CMVD
--encodi ng ENC

--file (-F) FILENAMVE
--force-1og

--message (-n) MESSAGE
--parents

--quiet (-q)
--wWith-revprop ARG

Examples

Create adirectory in your working copy:

$ svn nkdir newdir
A newdi r

Create onein the repository (thisis an instant commit, so alog message is required):

$ svn nkdir -m"Making a new dir." http://svn.red-bean. conirepos/ newdir

Commi tted revision 26.

278

Subversion Complete Reference

Name

svn move (mv) — Move afile or directory.

Synopsis

svn nove SRC... DST

Description

This command moves files or directories in your working copy or in the repository.

0 This command is equivalent to an svn copy followed by svn delete.

When moving multiple sources, they will be added as children of DST, which must be adirectory.

asingle repository—Subversion does hot support cross-repository moving. Subversion supports the following types of

Subversion does not support moving between working copies and URLSs. In addition, you can only move files within
O/ moves within a single repository:

wcC _ wC
Move and schedule afile or directory for addition (with history).
URL _ URL

Complete server-side rename.

Options

--editor-cnd CMVMD
--encodi ng ENC

--file (-F) FILENAMVE
--force

--force-1og

--message (-n) MESSAGE
--parents

--quiet (-q)
--revision (-r) REV
--with-revprop ARG

Examples

Move afilein your working copy:
$ svn nove foo.c bar.c
A bar. c

D f oo.c

Move several filesin your working copy into a subdirectory:

279

Subversion Complete Reference

$ svn nove baz.c bat.c qux.c src
A src/ baz.c

D baz. c

A src/bat.c

D bat. c

A src/ qux. c

D qux. c

Move afilein the repository (thisisan immediate commit, so it requires a commit message):

$ svn nove -m"Mwve a file" http://svn.red-bean. conirepos/foo.c \
http://svn. red-bean. com repos/bar.c

Commi tted revision 27.

280

Subversion Complete Reference

Name

svn propdel (pdel, pd) — Remove a property from an item.
Synopsis

svn propdel PROPNAME [PATH. . .]

svn propdel PROPNAME --revprop -r REV [TARCGET]
Description

This removes properties from files, directories, or revisions. The first form removes versioned propertiesin your working copy, and
the second removes unversioned remote properties on a repository revision (TARGET determines only which repository to access).

Options

--changel i st ARG
--depth ARG
--quiet (-q)
--recursive (-R
--revision (-r) REV
--revprop

Examples
Delete a property from afile in your working copy:

$ svn propdel svn:ninme-type sone-script
property 'svn:mne-type' deleted from'sone-script

Delete arevision property:

$ svn propdel --revprop -r 26 rel ease-date
property 'rel ease-date' deleted fromrepository revision '26'

281

Subversion Complete Reference

Name

svn propedit (pedit, pe) — Edit the property of one or more items under version control. See svn propset (pset, ps) later in this chapter.
Synopsis
svn propedit PROPNAVE TARGET.. .

svn propedit PROPNAME --revprop -r REV [TARGET]

Description

Edit one or more properties using your favorite editor. The first form edits versioned propertiesin your working copy, and the second
edits unversioned remote properties on arepository revision (TARGET determines only which repository to access).

Options

--editor-cnd CMVD
--encodi ng ENC

--file (-F) FILENAMVE
--force

--force-1og

--message (-n) MESSAGE
--revision (-r) REV
--revprop
--wWith-revprop ARG

Examples

svn propedit makesit easy to modify properties that have multiple values:

$ svn propedit svn: keywords foo.c

svn will open in your favorite text editor a tenporary file

contai ning the current contents of the svn: keywords property. You
can add nmultiple values to a property easily here by entering one
val ue per line. Wen you save the tenporary file and exit,
Subversion will re-read the tenporary file and use its updated
contents as the new val ue of the property.

T

Set new val ue for property 'svn: keywords' on 'foo.c'
$

282

Subversion Complete Reference

Name
svn propget (pget, pg) — Print the value of a property.

Synopsis
svn propget PROPNAME [TARGET[@GREV] . . .]

svn propget PROPNAME --revprop -r REV [URL]
Description

Print the value of a property on files, directories, or revisions. The first form prints the versioned property of an item or itemsin
your working copy, and the second prints unversioned remote properties on arepository revision. See the section called “ Properties”
for more information on properties.

Options

--changel i st ARG
--depth ARG
--recursive (-R
--revision (-r) REV
--revprop

--strict

--verbose (-v)

--xm

Examples

Examine a property of afile in your working copy:

$ svn propget svn: keywords foo.c
Aut hor

Dat e

Rev

The same goes for arevision property:

$ svn propget svn:log --revprop -r 20
Began j ournal .

For amore structured display of properties, usethe - - ver bose (- v) option:

$ svn propget svn: keywords foo.c --verbose
Properties on 'foo.c':
svn: keywor ds
Aut hor
Dat e
Rev

By default, svn propget will append atrailing end-of-line sequence to the property valueit prints. Most of thetime, thisisadesirable
feature that has a positive effect on the printed output. But there are times when you might wish to capture the precise property value,

283

Subversion Complete Reference

perhaps because that value is not textual in nature, but of some binary format (such as a JPEG thumbnail stored as a property value,
for example). To disable pretty-printing of property values, usethe- - st ri ct option.

Lastly, you can get svn propget output in XML format with the - - xnmi option:

$ svn propget --xm svn:ignore
<?xm version="1.0"7?>
<properties>
<t ar get
pat h="">
<property
name="svn:ignore">*. 0
</ property>
</target>
</ properties>

284

Subversion Complete Reference

Name
svn proplist (plist, pl) — List al properties.

Synopsis

svn proplist [TARGET[@GREV]. . .]

svn proplist --revprop -r REV [TARCGET]
Description

List all properties on files, directories, or revisions. The first form lists versioned properties in your working copy, and the second
lists unversioned remote properties on arepository revision (TARGET determines only which repository to access).

Options

--changel i st ARG
--depth ARG
--quiet (-q)
--recursive (-R
--revision (-r) REV
--revprop
--verbose (-v)
--xm

Examples

You can use proplist to see the properties on an item in your working copy:

$ svn proplist foo.c
Properties on 'foo.c':
svn: m me-type
svn: keywor ds
owner

But with the- - ver bose (- v) flag, svn proplist is extremely handy asit also shows you the values for the properties:

$ svn proplist -v foo.c
Properties on 'foo.c'
svn: m me-type
text/plain
svn: keywor ds
Aut hor Date Rev
owner
sally

Lastly, you can get svn proplist output in xml format with the - - xni option:

$ svn proplist --xn
<?xm version="1.0"7?>

285

Subversion Complete Reference

<properties>

<t ar get
pat h=".">
<property
nane="svn:ignore"/>
</target>

</ properties>

286

Subversion Complete Reference

Name

svn propset (pset, ps) — Set PROPNANME to PROPVAL on files, directories, or revisions.

Synopsis

svn propset PROPNAMVE [PROPVAL | -F VALFILE] PATH...

svn propset PROPNAME --revprop -r REV [PROPVAL | -F VALFILE] [TARGET]

Description

Set PROPNAME to PROPVAL on files, directories, or revisions. The first example creates a versioned, local property change in the
working copy, and the second creates an unversioned, remote property change on a repository revision (TARGET determines only
which repository to access).

Subversion has a number of “special” properties that affect its behavior. See the section called “ Subversion Properties’
o} later in this chapter for more on these properties.

Options

--changel i st ARG
--depth ARG
--encodi ng ENC
--file (-F) FILENAME
--force

--quiet (-q)
--recursive (-R
--revision (-r) REV
--revprop

--targets FI LENAME

Examples

Set the MIME type for afile:

$ svn propset svn:nime-type i mage/jpeg foo.jpg
property 'svn:mine-type' set on 'foo.jpg

On aUnix system, if you want afile to have the executable permission set:

$ svn propset svn: executabl e ON somescri pt
property 'svn: executable' set on 'sonescript'

Perhaps you have an internal policy to set certain properties for the benefit of your coworkers:

$ svn propset owner sally foo.c
property 'owner' set on 'foo.c'

If you made a mistake in alog message for a particular revision and want to change it, use - - r evpr op and set svn: | og to the
new log message:

287

Subversion Complete Reference

$ svn propset --revprop -r 25 svn:log "Journal ed about trip to New York."
property 'svn:log' set on repository revision '25

Or, if you don't have aworking copy, you can provide a URL.:

$ svn propset --revprop -r 26 svn:log "Docunment nap." \
http://svn.red-bean. conl repos
property 'svn:log' set on repository revision '25

Lastly, you cantell propset to takeitsinput from afile. Y ou could even use thisto set the contents of a property to something binary:

$ svn propset owner-pic -F sally.jpg noo.c
property 'owner-pic' set on 'npo.c'

explicitly enable revision property modifications by creating a hook named pr e- r evpr op- change. Seethe section

By default, you cannot modify revision properties in a Subversion repository. Your repository administrator must
<> called “Implementing Repository Hooks’ for more information on hook scripts.

288

Subversion Complete Reference

Name

svn resolve — Resolve conflicts on working copy files or directories.
Synopsis

svn resol ve PATH. ..

Description

Resolve “conflicted” state on working copy filesor directories. This routine does not semantically resolve conflict markers; however,
it replaces PATH with the version specified by the - - accept argument and then removes conflict-related artifact files. Thisalows
PATH to be committed again—that is, it tells Subversion that the conflicts have been “resolved.”. You can pass the following
argumentsto the - - accept command depending on your desired resolution:

base

Choose thefile that was the BASE revision before you updated your working copy. That is, the file that you checked out before
you made your latest edits.

wor ki ng

Assuming that you've manually handled the conflict resolution, choose the version of the file as it currently stands in your
working copy.

m ne-full

Resolve al conflicted files with copies of the files as they stood immediately before you ran svn update.
theirs-full

Resolve all conflicted files with copies of the files that were fetched from the server when you ran svn update.

See the section called “ Resolve Any Conflicts’ for an in-depth look at resolving conflicts.

Options

--accept ACTION
--depth ARG
--quiet (-q)
--recursive (-R
--targets FILENAVE

Examples

Here's an example where, after a postponed conflict resolution during update, svn resolve replaces the all conflictsin file f 0o. ¢
with your edits:

$ svn update

Conflict discovered in 'foo.c'.

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

C foo.c

289

Subversion Complete Reference

Updated to revision 5.
Summary of conflicts:
Text conflicts: 1
$ svn resolve --accept mine-full foo.c
Resol ved conflicted state of 'foo.c
$

290

Subversion Complete Reference

Name

svn resolved — Deprecated. Remove “conflicted” state on working copy files or directories.
Synopsis
svn resol ved PATH. ..

Description

This command has been deprecated in favor of running svn resol ve --accept worki ng PATH. See svn resolve in the
preceding section for details.

Remove“ conflicted” state on working copy files or directories. Thisroutine does not semantically resolve conflict markers; it merely
removes conflict-related artifact files and allows PATH to be committed again; that is, it tells Subversion that the conflicts have been
“resolved.” See the section called “ Resolve Any Conflicts” for an in-depth look at resolving conflicts.

Options

--depth ARG
--quiet (-q)
--recursive (-R
--targets FI LENAME

Examples

If you get a conflict on an update, your working copy will sprout three new files:

$ svn update

C foo.c

Updated to revision 31.

Summary of conflicts:
Text conflicts: 1

$ Is foo.c*

foo.c
foo.c.m ne
foo.c.r30
foo.c.r31
$

Once you've resolved the conflict and f 00. ¢ is ready to be committed, run svn resolved to let your working copy know you've
taken care of everything.

You can just remove the conflict files and commit, but svn resolved fixes up some bookkeeping data in the working
Q copy administrative areain addition to removing the conflict files, so we recommend that you use this command.

291

Subversion Complete Reference

Name

svn revert — Undo al local edits.

Synopsis

svn revert PATH. ..

Description

Reverts any local changesto afile or directory and resolves any conflicted states. svn revert will revert not only the contents of an
item in your working copy, but also any property changes. Finally, you can use it to undo any scheduling operations that you may
have performed (e.g., files scheduled for addition or deletion can be “unscheduled”).

Options

--changel i st ARG
--depth ARG

--quiet (-q)
--recursive (-R
--targets FI LENAME

Examples

Discard changesto afile:

$ svn revert foo.c

Reverted foo.c

If you want to revert awhole directory of files, usethe - - dept h=i nfi ni t y option:
$ svn revert --depth=infinity .

Reverted newdir/afile

Reverted foo.c

Reverted bar.txt

Lastly, you can undo any scheduling operations:

$ svn add mi stake.txt whoops

A m st ake. t xt
A whoops
A whoops/ oopsi e. ¢

$ svn revert mstake.txt whoops
Reverted ni stake. t xt
Reverted whoops

$ svn status
? m st ake. t xt
? whoops

292

Subversion Complete Reference

svnrevert isinherently dangerous, sinceits entire purposeisto throw away data—namely, your uncommitted changes.
Once you've reverted, Subversion provides no way to get back those uncommitted changes.

If you provide no targets to svn revert, it will do nothing. To protect you from accidentally losing changes in your
working copy, svn revert requires you to explicitly provide at least one target.

293

Subversion Complete Reference

Name
svn status (stat, st) — Print the status of working copy files and directories.

Synopsis

svn status [PATH...]

Description

Print the status of working copy files and directories. With no arguments, it prints only locally modified items (no repository access).
With - - show updat es (- u), it adds working revision and server out-of-date information. With - - ver bose (- v), it printsfull

revision information on every item. With - - qui et (-), it prints only summary information about locally modified items.

The first seven columns in the output are each one character wide, and each column gives you information about a different aspect
of each working copy item.

The first column indicates that an item was added, deleted, or otherwise changed:
No modifications.
DA

Item is scheduled for addition.

Item is scheduled for deletion.
'M

Item has been modified.

Item has been replaced in your working copy. This means the file was scheduled for deletion, and then a new file with the same
name was scheduled for addition in its place.

'C

The contents (as opposed to the properties) of the item conflict with updates received from the repository.
Ly

Item is present because of an externals definition.
Oy

Item isbeing ignored (e.g., withthesvn: i gnor e property).

Item is not under version control.

294

Subversion Complete Reference

Item is missing (e.g., you moved or deleted it without using svn). This also indicates that a directory is incomplete (a checkout
or update was interrupted).

Item is versioned as one kind of object (file, directory, link), but has been replaced by a different kind of object.
The second column tells the status of afile's or directory's properties:

No modifications.
'M

Properties for thisitem have been modified.
'C

Properties for thisitem are in conflict with property updates received from the repository.

The third column is populated only if the working copy directory is locked (see the section called “ Sometimes Y ou Just Need to
Clean Up"):

Item is not locked.

L
Item islocked.

The fourth column is populated only if the item is scheduled for addition-with-history:
No history scheduled with commit.

g
History scheduled with commit.

The fifth column is populated only if the item is switched relative to its parent (see the section called “ Traversing Branches”):
Item isachild of its parent directory.

g
Item is switched.

The sixth column is populated with lock information:

When - - show updat es (- u) isused, the fileis not locked. If - - show updat es (- u) is not used, this merely means that
thefileis not locked in this working copy.

295

Subversion Complete Reference

K
Fileislocked in thisworking copy.
O
Fileislocked either by another user or in another working copy. This appears only when - - show updat es (- u) is used.
T
File was locked in this working copy, but the lock has been “stolen” and isinvalid. Thefileis currently locked in the repository.
This appears only when - - show updat es (- u) is used.
B

File was locked in this working copy, but the lock has been “broken” and isinvalid. Thefile is no longer locked. This appears
only when - - show- updat es (- u) isused.

The seventh column is populated only if the item is the victim of atree conflict:
Item is not the victim of atree conflict.
'C
Item isthe victim of atree conflict.
The eighth column is always blank.
The out-of-date information appears in the ninth column (only if you passthe - - show updat es (- u) option):

Theitem in your working copy is up to date.

A newer revision of the item exists on the server.

The remaining fields are variable width and delimited by spaces. The working revision is the next field if the - - show updat es
(-u)or--verbose (- v) option is passed.

If the- - ver bose (- v) option is passed, the last committed revision and last committed author are displayed next.

The working copy path is always the final field, so it can include spaces.

Options

--changel i st ARG
--depth ARG
--ignore-externals
--increnental
--no-ignore

--quiet (-q)
--show updates (-u)
--verbose (-v)

296

Subversion Complete Reference

--xni

Examples

Thisisthe easiest way to find out what changes you have made to your working copy:

$ svn status wc
M wc/ bar. c
A + we/ gax. ¢

If you want to find out what files in your working copy are out of date, pass the - - show updat es (- u) option (this will not
make any changes to your working copy). Here you can see that we/ f 00. ¢ has changed in the repository since we last updated
our working copy:

$ svn status -u wc
M 965 we/ bar . c
* 965 we/ foo. ¢
A + 965 we/ gax. ¢
St at us agai nst revi sion: 981

the repository if you later use svn update). - - show updat es (- u) does not cause the status listing to reflect the
repository'sversion of theitem (although you can see the revision number in the repository by passing the- - ver bose
(- v) option).

: - - show updat es (- u) only places an asterisk next to itemsthat are out of date (i.e., itemsthat will be updated from

The most information you can get out of the status subcommand is as follows:;

$ svn status -u -v wc

M 965 938 sally we/ bar . c
* 965 922 harry we/ foo. ¢
A + 965 687 harry we/ gax. ¢
965 687 harry we/ zig.c

St at us agai nst revi sion: 981

Lastly, you can get svn status output in XML format with the - - xnmi option:

$ svn status --xn wc
<?xm version="1.0"?>
<stat us>
<t ar get
pat h="wc" >
<entry
pat h="gax. c">
<wec- st at us
props="none"
i tem="added"
revision="0">
</ wc- st at us>
</entry>
<entry
pat h="bar.c">

297

Subversion Complete Reference

<wc- st at us
pr ops="nor mal "
i tem="nodified"
revisi on="965">
<commi t
revisi on="965">
<aut hor >sal | y</ aut hor >
<dat €>2008- 05- 28T06: 35: 53. 048870Z</ dat e>
</comit>
</ wc- st at us>
</entry>
</target>
</ st at us>

For many more examples of svn status, see the section called “ See an overview of your changes”.

298

Subversion Complete Reference

Name
svn switch (sw) — Update working copy to a different URL.

Synopsis
svn switch URL[@EGREV] [PATH|

switch --relocate FROM TO [PATH. . .]
Description

Thefirst variant of this subcommand (without the- - r el ocat e option) updates your working copy to point to anew URL—usually
a URL that shares a common ancestor with your working copy, although not necessarily. This is the Subversion way to make a
working copy begin tracking a new branch. If specified, PEGREV determines in which revision the target is first looked up. See the
section called “ Traversing Branches” for an in-depth look at switching.

If - - f or ce isused, unversioned obstructing pathsin the working copy do not automatically cause afailureif the switch attemptsto
add the same path. If the obstructing path is the same type (file or directory) as the corresponding path in the repository, it becomes
versioned but its contents are left untouched in the working copy. This means that an obstructing directory's unversioned children
may also obstruct and become versioned. For files, any content differences between the obstruction and the repository are treated like
alocal modification to the working copy. All properties from the repository are applied to the obstructing path.

As with most subcommands, you can limit the scope of the switch operation to a particular tree depth using the - - dept h option.
Alternatively, you can use the - - set - dept h option to set anew “ sticky” working copy depth on the switch target.

The- - r el ocat e option causes svh switch to do something different: it updates your working copy to point to the same repository
directory, only at adifferent URL (typically because an administrator has moved the repository to another server, or to another URL
on the same server).

Options

--accept ACTION
--depth ARG

--di ff3-cnmd CVD
--force
--ignore-externals
--quiet (-q)
--relocate
--revision (-r) REV
--set-depth ARG

Examples

If you're currently inside the directory vendor s, which was branched to vendor s-wi t h-fi x, and you'd like to switch your
working copy to that branch:

$ svn switch http://svn.red-bean. com repos/branches/vendors-with-fix .
] nmyproj / f oo. t xt

] nmypr oj / bar .t xt

] nmyproj/ baz.c

] nmypr oj / qux. c

Updated to revision 31.

299

Subversion Complete Reference

To switch back, just provide the URL to the location in the repository from which you originally checked out your working copy:

$ svn switch http://svn.red-bean. conl repos/trunk/vendors .
U nmypr oj / f oo. t xt

U nmypr oj / bar. t xt

U nmyproj / baz.c

U mypr oj / qux. c

Updated to revision 31.

0 Y ou can switch just part of your working copy to a branch if you don't want to switch your entire working copy.

Sometimes an administrator might change the location (or apparent location) of your repository—in other words, the content of the
repository doesn't change, but the repository's root URL does. For example, the hostname may change, the URL scheme may change,
or any part of the URL that leadsto the repository itself may change. Rather than check out anew working copy, you can havethe svn
switch command “rewrite” your working copy's administrative metadata to refer to the new repository location. If you use the - -
r el ocat e option to svn switch, Subversion will contact the repository to validate the relocation request (looking for the repository
at the new URL, of course), and then do this metadata rewriting. No file contents will be changed as the result of this type of switch
operation—thisis a metadata-only modification to the working copy.

$ svn checkout file:///var/svn/repos test
A test/a
A test/b

$ mv /var/svn/repos /var/svn/new ocation

$ svn update test/
svn: Unable to open an ra_local session to URL
svn: Unable to open repository 'file:///var/svn/repos'

$ svn switch --relocate file:///var/svn/repos \
file:///var/svn/tnp/ new ocation test/

$ svn update test/
At revision 3.

Be careful when using the - - r el ocat e option. If you mistype the argument, you might end up creating nonsensical
URLs within your working copy that render the whole workspace unusable and tricky to fix. It's also important to
understand exactly when one should or shouldn't use - - r el ocat e. Here's the rule of thumb:

« If the working copy needs to reflect a new directory within the repository, use just svn switch.

« If the working copy still reflects the same repository directory, but the location of the repository itself has changed,
use svn switch with the- - r el ocat e option.

300

Subversion Complete Reference

Name

svn unlock — Unlock working copy paths or URLS.
Synopsis

svn unl ock TARGET. ..

Description

Unlock each TARGET. If any TARGET islocked by another user or no valid lock token exists in the working copy, print a warning
and continue unlocking the rest of the TARGETS. Use - - f or ce to break alock belonging to another user or working copy.

Options

--force
--targets FILENAVE

Examples

Unlock two filesin your working copy:

$ svn unl ock tree.jpg house.jpg
"tree.jpg’ unlocked.
"house. j pg' unl ocked.

Unlock afile in your working copy that is currently locked by another user:

$ svn unlock tree.jpg

svn: 'tree.jpg" is not locked in this working copy
$ svn unlock --force tree.jpg

"tree.jpg" unlocked.

Unlock afile without aworking copy:

$ svn unlock http://svn.red-bean. confrepos/test/tree.jpg
"tree.jpg unl ocked.

For further details, see the section called “Locking”.

301

Subversion Complete Reference

Name
svn update (up) — Update your working copy.

Synopsis

svn update [PATH...]

Description

svn update brings changes from the repository into your working copy. If no revision is given, it brings your working copy up to
date with the HEAD revision. Otherwise, it synchronizes the working copy to the revision given by the - - r evi si on (- r) option.
As part of the synchronization, svn update also removes any stale locks (see the section called “ Sometimes Y ou Just Need to Clean

Up") found in the working copy.

For each updated item, it prints a line that starts with a character reporting the action taken. These characters have the following
meaning:

A

Added
B

Broken lock (third column only)
D

Deleted
U

Updated
C

Conflicted
G

Merged
E

Existed

A character in the first column signifies an update to the actual file, whereas updates to the file's properties are shown in the second
column. Lock information is printed in the third column.

As with most subcommands, you can limit the scope of the update operation to a particular tree depth using the - - dept h option.
Alternatively, you can usethe - - set - dept h option to set a new “sticky” working copy depth on the update target.

Options

--accept ACTI ON

302

Subversion Complete Reference

- -changel i st
--depth ARG
--di ff3-cmd CVD
--editor-cnd CMVMD

--force
--ignore-externals
--quiet (-0Q)

--revision (-r) REV
--set-depth ARG

Examples

Pick up repository changes that have happened since your last update:

$ svn update

A newdi r/ t oggl e. c

A newdi r/ di scl ose. c
A newdi r/ | aunch. c

D newdi r / READMVE
Updated to revision 32.

You can aso “update”’ your working copy to an older revision (Subversion doesn't have the concept of “sticky” fileslike CV S does;
see Appendix B, Subversion for CVSUsers):

$ svn update -r30

A newdi r / READMVE

D newdi r/ toggl e. c

D newdi r/ di scl ose. ¢
D newdi r/ | aunch. c

U foo.c

Updated to revision 30.

If you want to examine an older revision of a single file, you may want to use svn cat instead—it won't change your
@j working copy.

svn updateisalso the primary mechanism used to configure sparse working copies. When used with the - - set - dept h, the update
operation will omit or reenlist individual working copy members by modifying their recorded ambient depth to the depth you specify
(fetching information from the repository as necessary). See the section called “ Sparse Directories’ for more about sparse directories.

svnhadmin—Subversion Repository Administration

svhadmin isthe administrative tool for monitoring and repairing your Subversion repository. For detailed information on repository
administration, see the maintenance section for the section called “ svnadmin”.

Since svnadmin works via direct repository access (and thus can only be used on the machine that holds the repository), it refers
to the repository with a path, not a URL.

svnadmin Options

Optionsin svnadmin are global, just asthey arein svn:

303

Subversion Complete Reference

- - bdb- 1 og- keep

(Berkeley DB-specific.) Disable automatic log removal of database logfiles. Having these logfiles around can be convenient if
you need to restore from a catastrophic repository failure.

- - bdb-t xn- nosync

(Berkeley DB-specific.) Disables fsync when committing database transactions. Used with the svnadmin create command to
create a Berkeley DB-backed repository with DB_ TXN_NOSYNC enabled (which improves speed but has some risks associated
with it).

- - bypass- hooks

Bypass the repository hook system.
--cl ean-1ogs

Remove unused Berkeley DB logs.
--config-dir DR

Instructs Subversion to read configuration information from the specified directory instead of the default location
(. subver si on inthe user's home directory).

--del tas

When creating a repository dump file, specify changes in versioned properties and file contents as deltas against their previous
state.

--fs-type ARG
When creating arepository, use ARG as the requested filesyste type. ARG may be either bdb or f sf s.
--force-uuid

By default, when loading data into arepository that already contains revisions, svnadmin will ignore the UUID from the dump
stream. This option will cause the repository's UUID to be set to the UUID from the stream.

--ignore-uuid

By default, when loading data into an empty repository, svnadmin will set the repository's UUID to the UUID from the dump
stream. This option will cause the UUID from the stream to be ignored.

--increnental
Dump arevision only as a diff against the previous revision, instead of the usual fulltext.
--parent-dir DIR
When loading a dump file, root paths at DI Rinstead of / .
--pre-1.4-conpatible
When creating a new repository, use aformat that is compatible with versions of Subversion earlier than Subversion 1.4.
--pre-1.5-conpatible

When creating anew repository, use aformat that is compatible with versions of Subversion earlier than Subversion 1.5.

304

Subversion Complete Reference

--pre-1.6-conpatible

When creating a new repository, use aformat that is compatible with versions of Subversion earlier than Subversion 1.6.
--revision(-r) ARG

Specify a particular revision to operate on.
--quiet (-q)

Do not show normal progress—show only errors.
- -use- post - conmi t - hook

When loading a dump file, runs the repository's post - commi t hook after finalizing each newly loaded revision.
- - use- post - revpr op- change- hook

When changing arevision property, runsthe repository'spost - r evpr op- change hook after changing the revision property.
--use-pre-conmit-hook

When loading a dump file, runs the repository's pr e- conmi t hook before finalizing each newly loaded revision. If the hook
fails, aborts the commit and terminates the load process.

--use- pre-revprop-change- hook

When changing arevision property, runsthe repository'spr e- r evpr op- change hook before changing the revision property.
If the hook fails, aborts the modification and terminates.

--wait

For operations which require exclusive repository access, wait until the requisite repository lock has been obtained instead of
immediately erroring out when it cannot be.

svnadmin Subcommands

Here are the various subcommands for the svnadmin program.

305

Subversion Complete Reference

Name

svnadmin crashtest — Simulate a process that crashes.
Synopsis
svnadm n crasht est REPOS_PATH

Description

Opentherepository at REPOS _PATH, then abort, thus simulating aprocessthat crasheswhile holding an open repository handle. This
isused for testing automatic repository recovery (anew featurein Berkeley DB 4.4). It'sunlikely that you'll need to run this command.

Options
None
Examples

$ svnadm n crashtest /var/svn/repos
Abort ed

Exciting, isn't it?

306

Subversion Complete Reference

Name

svnadmin create — Create a new, empty repository.
Synopsis
svnadm n create REPCS PATH

Description

Create a new, empty repository at the path provided. If the provided directory does not exist, it will be created for you.1 As of
Subversion 1.2, svnadmin creates new repositories with the FSFS filesystem backend by default.

While svnadmin createwill create the base directory for anew repository, it will not create intermediate directories. For example, if
you have an empty directory named / var / svn, creating/ var / svn/ r epos will work, while attempting to create/ var / svn/

subdi rect ory/ r epos will fail with an error. Also, keep in mind that, depending on where on your system you are creating your
repository, you might need to run svnadmin create as a user with elevated privileges (such asther oot user).

Options

- - bdb- 1 og- keep

- - bdb-t xn- nosync
--config-dir DIR
--fs-type TYPE
--pre-1.4-conpatible
--pre-1.5-conpatible
--pre-1.6-conpatible

Examples
Creating a new repository isthis easy:
$ cd /var/svn

$ svnadnmin create repos
$

In Subversion 1.0, aBerkeley DB repository isaways created. In Subversion 1.1, a Berkeley DB repository isthe default repository
type, but an FSFS repository can be created using the - - f s-t ype option:

$ cd /var/svn
$ svnadm n create repos --fs-type fsfs
$

IRemember, svnadmin works only with local paths, not URLs.

307

Subversion Complete Reference

Name
svnadmin deltify — Deltify changed pathsin arevision range.

Synopsis
svhadmin deltify [-r LOAER[: UPPER]] REPOS_PATH

Description

svhadmin deltify exists in current versions of Subversion only for historical reasons. This command is deprecated and no longer
needed.

It datesfrom atime when Subversion offered administrators greater control over compression strategiesin the repository. Thisturned
out to be alot of complexity for very little gain, and this “feature” was deprecated.

Options

--quiet (-q)
--revision (-r) REV

308

Subversion Complete Reference

Name

svnadmin dump — Dump the contents of the filesystem to st dout .
Synopsis
svnadm n dunmp REPCS PATH [-r LOWNER[: UPPER]] [--increnmental] [--deltas]

Description

Dump the contents of the filesystem to st dout in a“dump file” portable format, sending feedback to st der r . Dump revisions
LOVER rev through UPPER rev. If no revisions are given, dump al revision trees. If only LOAER is given, dump that one revision
tree. See the section called “Migrating Repository Data Elsewhere” for apractical use.

By default, the Subversion dump stream contains asingle revision (the first revision in the requested revision range) in which every
file and directory in the repository in that revision is presented as though that whole tree was added at once, followed by other
revisions (the remainder of the revisions in the requested range), which contain only the files and directories that were modified in
those revisions. For amodified file, the complete full-text representation of its contents, aswell asall of its properties, are presented
in the dump file; for adirectory, al of its properties are presented.

Two useful options modify the dump file generator's behavior. The first isthe - - i ncr ement al option, which simply causes that
first revision in the dump stream to contain only the files and directories modified in that revision, instead of being presented as
the addition of a new tree, and in exactly the same way that every other revision in the dump file is presented. This is useful for
generating a relatively small dump file to be loaded into another repository that already has the files and directories that exist in
the original repository.

The second useful optionis- - del t as. This option causes svnadmin dump to, instead of emitting full-text representations of file
contents and property lists, emit only deltas of those items against their previous versions. This reduces (in some cases, drastically)
the size of the dump file that svnadmin dump creates. There are, however, disadvantages to using this option—deltified dump files
are more CPU-intensive to create, cannot be operated on by svndumpfilter, and tend not to compress as well as their nondeltified
counterparts when using third-party tools such as gzip and bzip2.

Options

--del tas
--increnental

--quiet (-q)
--revision (-r) REV
Examples

Dump your whole repository:

Dunped revi sion 0.
Dunped revi sion 1.

$ svnadmi n dunp /var/svn/repos > full.dunp
* Dunped revision 2.

Incrementally dump a single transaction from your repository:

$ svnadm n dunp /var/svn/repos -r 21 --increnental > incr.dunp

309

Subversion Complete Reference

* Dunped revision 21.

310

Subversion Complete Reference

Name
svnadmin help (h, ?) — Help!

Synopsis
svnadnmi n hel p [SUBCOWAND. . .]

Description

This subcommand is useful when you're trapped on a desert island with neither a Net connection nor a copy of this book.

311

Subversion Complete Reference

Name

svnadmin hotcopy — Make a hot copy of arepository.

Synopsis

svnadm n hot copy REPOS _PATH NEW REPCS PATH

Description

This subcommand makesafull “hot” backup of your repository, including all hooks, configuration files, and, of course, databasefiles.
If you passthe - - cl ean-1 ogs option, svnadmin will perform a hot copy of your repository, and then remove unused Berkeley
DB logs from the original repository. Y ou can run this command at any time and make a safe copy of the repository, regardless of

whether other processes are using the repository.

Options
--cl ean-1o0gs

Asdescribed inthe section called “ Berkeley DB”, hot-copied Berkeley DB repositories are not portabl e across operating
° systems, nor will they work on machines with adifferent “endianness’ than the machine where they were created.

312

Subversion Complete Reference

Name

svnadmin list-dblogs — Ask Berkeley DB which logfiles exist for a given Subversion repository (applies only to repositories using
the bdb backend).

Synopsis

svnadmin |ist-dbl ogs REPOS_PATH

Description

Berkeley DB creates logs of all changes to the repository, which alow it to recover in the face of catastrophe. Unless you enable

DB _LOG AUTOREMOVE, the logfiles accumulate, although most are no longer used and can be deleted to reclaim disk space. See
the section called “Managing Disk Space” for more information.

313

Subversion Complete Reference

Name

svnadmin list-unused-dblogs — Ask Berkeley DB which logfiles can be safely deleted (applies only to repositories using the bdb
backend).

Synopsis
svnadmi n |ist-unused-dbl ogs REPOS_PATH
Description

Berkeley DB creates logs of all changes to the repository, which alow it to recover in the face of catastrophe. Unless you enable
DB _LOG AUTOREMOVE, the logfiles accumulate, although most are no longer used and can be deleted to reclaim disk space. See
the section called “Managing Disk Space” for more information.

Examples

Remove al unused logfiles from the repository:

$ svnadmi n |ist-unused-dbl ogs /var/svn/repos
/var/svn/repos/| og. 0000000031
/var/svn/repos/| og. 0000000032
/var/svn/repos/| og. 0000000033

$ svnadmi n |ist-unused-dbl ogs /var/svn/repos | xargs rm
di sk space reclai ned!

314

Subversion Complete Reference

Name

svnadmin load — Read arepository dump stream from st di n.
Synopsis
svnadm n | oad REPCS_PATH

Description

Read arepository dump stream from st di n, committing new revisions into the repository's filesystem. Send progress feedback to
st dout .

Options

--force-uuid
--ignore-uuid
--parent-dir

--quiet (-q)

- - use- post - commi t - hook
--use-pre-conmit-hook

Examples

This shows the beginning of loading a repository from a backup file (made, of course, with svnadmin dump):

$ svnadm n load /var/svn/restored < repos-backup
<<< Started new txn, based on original revision 1
* adding path : test ... done.
* adding path : test/a ... done.

Or if you want to load into a subdirectory:

$ svnadmin load --parent-dir new subdir/for/project \
/var/svn/restored < repos-backup
<<< Started new txn, based on original revision 1
* adding path : test ... done.
* adding path : test/a ... done.

315

Subversion Complete Reference

Name

svnadmin Islocks — Print descriptions of al locks.
Synopsis

svnadm n | sl ocks REPOS_PATH [PATH | N- REPCS]
Description

Print descriptions of all locks in repository REPOS PATH underneath the path PATH- | N- REPGCS. If PATH- | N- REPCS is nhot
provided, it defaults to the root directory of the repository.

Options
None

Examples

Thisliststhe one locked file in the repository at / var / svn/ r epos:

$ svnadm n | sl ocks /var/svn/repos

Path: /tree.jpg

UUI D Token: opaquel ockt oken: ab00ddf O- 6af b- 0310- 9cd0- dda813329753
Owner: harry

Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005)

Expi res:

Comment (1 line):

Rewor k t he uppernost branches on the bald cypress in the foreground.

316

Subversion Complete Reference

Name

svnadmin Istxns — Print the names of all uncommitted transactions.
Synopsis

svnadm n | st xns REPCS_PATH

Description

Print the names of all uncommitted transactions. See the section called “Removing dead transactions’ for information on how
uncommitted transactions are created and what you should do with them.

Examples
List al outstanding transactions in a repository:
$ svnadnmin | stxns /var/svn/repos/

1w
1x

317

Subversion Complete Reference

Name

svnadmin pack — Possibly compact the repository into a more efficient storage model.
Synopsis

svnadm n pack REPOS_PATH

Description

See the section called “ Packing FSFS filesystems” for more information.

Options

None

318

Subversion Complete Reference

Name

svnadmin recover — Bring a repository database back into a consistent state (applies only to repositories using the bdb backend).
In addition, if r epos/ conf / passwd does not exist, it will create a default passwordfile .

Synopsis

svnadm n recover REPOS PATH

Description

Run this command if you get an error indicating that your repository needs to be recovered.

Options

--wait

Examples

Recover a hung repository:

$ svnadm n recover /var/svn/repos/

Repository | ock acquired.
Pl ease wait; recovering the repository may take sone tine...

Recovery conpl et ed.
The | atest repos revision is 34.

Recovering the database requires an exclusive lock on the repository. (Thisisa*“ database lock”; see the sidebar The Three Meanings
of “Lock”.) If another process is accessing the repository, then svnadmin recover will error:

$ svnadm n recover /var/svn/repos
svn: Failed to get exclusive repository access; perhaps another process
such as httpd, svnserve or svn has it open?

$

The- - wai t option, however, will cause svnadmin recover to wait indefinitely for other processes to disconnect:

$ svnadmi n recover /var/svn/repos --wait
Waiting on repository | ock; perhaps another process has it open?

time goes by...

Repository | ock acquired.
Pl ease wait; recovering the repository may take sone tine...

Recovery conpl et ed.
The | atest repos revision is 34.

319

Subversion Complete Reference

Name

svnadmin rmlocks — Unconditionally remove one or more locks from arepository.
Synopsis

svnadm n rm ocks REPOS _PATH LOCKED PATH. ..

Description

Remove one or more locks from each LOCKED PATH.

Options

None

Examples

Thisdeletesthelocksont r ee. j pg and house. j pg intherepository at/ var / svn/ r epos:
$ svnadm n rnl ocks /var/svn/repos tree.jpg house.jpg

Removed | ock on '/tree.jpg.
Removed | ock on '/house. | pg.

320

Subversion Complete Reference

Name

svnadmin rmtxns — Del ete transactions from a repository.
Synopsis
svnadm n rmtxns REPCS PATH TXN_NAME. . .

Description

Delete outstanding transactions from arepository. Thisis covered in detail in the section called “Removing dead transactions’.

Options

--quiet (-0Q)
Examples

Remove named transactions:

$ svnadm n rntxns /var/svn/repos/ 1w 1x

Fortunately, the output of Istxns works great as the input for rmtxns:

$ svnadm n rntxns /var/svn/repos/ "~svnadm n |stxns /var/svn/repos/”

This removes all uncommitted transactions from your repository.

321

Subversion Complete Reference

Name

svnadmin setlog — Set the log message on arevision.
Synopsis

svnadm n setl og REPOS PATH -r REVI SI ON FI LE
Description

Set the log message on revision REVI SI ON to the contents of FI LE.

Thisissimilar to using svn propset withthe- - r evpr op optiontosetthesvn: | og property on arevision, except that you can also
use the option - - bypass- hooks to avoid running any pre- or post-commit hooks, which is useful if the modification of revision
properties has not been enabled in the pr e- r evpr op- change hook.

Q Revision propertiesare not under version control, so thiscommand will permanently overwritethe previouslog message.

Options

- - bypass- hooks
--revision (-r) REV

Examples

Set the log message for revision 19 to the contents of the file msg:

$ svnadm n setlog /var/svn/repos/ -r 19 nsg

322

Subversion Complete Reference

Name

svnadmin setrevprop — Set a property on arevision.
Synopsis
svnadmi n setrevprop REPOS_PATH -r REVI SI ON NAME FI LE

Description

Set the property NAME on revision REVI SI ON'to the contentsof FI LE. Use- - use- pr e-r evpr op- change- hook or - - use-
post - r evpr op- change- hook to trigger the revision property-related hooks (e.g., if you want an email notification sent from
your post - r evpr op- change- hook).

Options

--revision (-r) ARG

- - use- post - revpr op- change- hook
--use- pre-revprop-change- hook
Examples

The following sets the revision property r eposi t or y- phot o to the contents of the filesandwi ch. png:

$ svnadm n setrevprop /var/svn/repos -r 0 repository-photo sandw ch. png

Asyou can see, svnadmin setrevprop has no output upon success.

323

Subversion Complete Reference

Name
svnadmin setuuid — Reset the repository UUID.

Synopsis
svnadmi n set uui d REPOS_PATH [NEW UUI D]

Description

Reset the repository UUID for the repository located at REPOS PATH. If NEW UUI D is provided, use that as the new repository
UUID; otherwise, generate a brand-new UUID for the repository.

Options
None

Examples

If you'vesvnsynced/ var / svn/ r epos to/ var/ svn/ r epos- newandintend to user epos- newasyour canonical repository,
you may want to changethe UUID for r epos- newtothe UUID of r epos so that your users don't have to check out anew working
copy to accommodate the change:

$ svnadm n setuuid /var/svn/repos-new 2109a8dd- 854f - 0410- ad31- d604008985ab

Asyou can see, svnadmin setuuid has no output upon success.

324

Subversion Complete Reference

Name

svnadmin upgrade — Upgrade a repository to the latest supported schema version.

Synopsis

svnadm n upgrade REPOS PATH

Description

Upgrade the repository located at REPOS PATH to the latest supported schema version.

Thisfunctionality is provided as a convenience for repository administrators who wish to make use of new Subversion functionality
without having to undertake a potentially costly full repository dump and load operation. As such, the upgrade performs only the
minimum amount of work needed to accomplish this while still maintaining the integrity of the repository. While a dump and

subsequent load guarantee the most optimized repository state, svnadmin upgrade does not.

Q Y ou should always back up your repository before upgrading.

Options
None
Examples

Upgrade the repository at path / var / r epos/ svn:

$ svnadm n upgrade /var/repos/svn
Repository | ock acquired.
Pl ease wait; upgrading the repository may take sone tine...

Upgr ade conpl et ed.

325

Subversion Complete Reference

Name
svnadmin verify — Verify the data stored in the repository.

Synopsis
svnadmi n verify REPOS_PATH
Description

Run this command if you wish to verify the integrity of your repository. Thisbasically iterates through al revisions in the repository
by internally dumping all revisions and discarding the output—it's a good idea to run this on aregular basis to guard against latent
hard disk failuresand “bitrot.” If this command fails—which it will do at thefirst sign of a problem—that means your repository has
at least one corrupted revision, and you should restore the corrupted revision from a backup (you did make a backup, didn't you?).

Options

--quiet (-q)
--revision (-r) ARG
Examples

Verify ahung repository:

$ svnadnmin verify /var/svn/repos/
* Verified revision 1729.

svnlook—Subversion Repository Examination

svnlook is a command-line utility for examining different aspects of a Subversion repository. It does not make any changes to the
repository—it's just used for “ peeking.” svnlook istypically used by the repository hooks, but a repository administrator might find
it useful for diagnostic purposes.

Since svnlook works via direct repository access (and thus can be used only on the machine that holds the repository), it refers to
the repository with a path, not a URL.

If no revision or transaction is specified, svnlook defaults to the youngest (most recent) revision of the repository.

svnlook Options

Options in svnlook are global, just as they are in svn and svnadmin; however, most options apply to only one subcommand since
the functionality of svnlook is (intentionally) limited in scope:

--copy-info

Causes svnlook changed to show detailed copy source information.
--diff-copy-from

Print differences for copied items against the copy source.
- - extensi ons (- x) ARG

Specifies customizations which Subversion should make when performing difference calculations. Valid extensions include:

326

Subversion Complete Reference

--i gnor e- space- change (- b)

Ignore changes in the amount of white space.
--ignore-all-space (-w

Ignore all white space.
--ignore-eol -style

Ignore changesin EOL (end-of-line) style.
--unified(-u)

Show three lines of unified diff context.
The default valueis - u.

Note that when Subversion is configured to invoke an external diff command, the value of the - - ext ensi on (- x) option
isn't restricted to the previously mentioned options, but may be any additional arguments which Subversion should pass to that
command. If you wish to pass multiple arguments, you must enclose all of them in quotes.

--full-paths

Causes svnlook treeto display full pathsinstead of hierarchical, indented path components.
--limt (-1)ARG

Limit output to a maximum number of ARGitems.
--no-di ff-deleted

Prevents svnlook diff from printing differences for deleted files. The default behavior when afile is deleted in a transaction/
revision isto print the same differences that you would see if you had |eft the file but removed all the content.

--no-di ff-added

Prevents svnlook diff from printing differences for added files. The default behavior when you add afile is to print the same
differences that you would see if you had added the entire contents of an existing (empty) file.

--non-recursive (-N)

Operate on asingle directory only.
--revision(-r) REV

Specifies a particular revision number that you wish to examine.
--revprop

Operates on a revision property instead of a property specific to a file or directory. This option requires that you also pass a
revision with the - - r evi si on (- r) option.

--transaction(-t)ID
Specifies a particular transaction 1D that you wish to examine.
--show i ds

Shows the filesystem node revision IDs for each path in the filesystem tree.

327

Subversion Complete Reference

--verbose (-v)

Be verbose. When used with svnlook proplist, for example, this causes Subversion to display not just the list of properties,
but their values also.

--xm
Prints output in XML format.

svnlook Subcommands

Here are the various subcommands for the svnlook program.

328

Subversion Complete Reference

Name

svnlook author — Print the author.

Synopsis

svnl ook aut hor REPOS PATH

Description

Print the author of arevision or transaction in the repository.
Options

--revision (-r) REV

--transaction (-t) TXN

Examples

svnlook author is handy, but not very exciting:

$ svnl ook author -r 40 /var/svn/repos
sally

329

Subversion Complete Reference

Name

svnlook cat — Print the contents of afile.
Synopsis

svnl ook cat REPOS_PATH PATH | N_REPCS
Description

Print the contents of afile.

Options

--revision (-r) REV

--transaction (-t) TXN

Examples

This shows the contents of afilein transaction ax 8, located at / t r unk/ README:

$ svnl ook cat -t ax8 /var/svn/repos /trunk/ READVE

Subversion, a version control system

$Last ChangedDat e: 2003-07-17 10: 45: 25 -0500 (Thu, 17 Jul 2003) $
Content s:

. A FEW PO NTERS
1. DOCUMENTATI ON
[11. PARTICIPATI NG I N THE SUBVERSI ON COVWMUNI TY

330

Subversion Complete Reference

Name
svnlook changed — Print the paths that were changed.

Synopsis
svnl ook changed REPOS PATH
Description

Print the paths that were changed in a particular revision or transaction, as well as “svn update-style” status letters in the first two
columns:

CA
Item added to repository
D"
Item deleted from repository
K
File contents changed
'u
Properties of item changed; note the leading underscore
"uJ
File contents and properties changed

Files and directories can be distinguished, as directory paths are displayed with atrailing “/ 7 character.

Options

--copy-info
--revision (-r) REV
--transaction (-t) TXN

Examples

This shows a list of al the changed files and directories in revision 39 of atest repository. Note that the first changed item is a
directory, as evidenced by the trailing / :

$ svnl ook changed -r 39 /var/svn/repos
A trunk/vendors/deli/

A trunk/vendors/deli/chips.txt

A trunk/vendors/deli/sandw ch. txt

A trunk/vendors/deli/pickle.txt

U trunk/vendors/ baker/ bagel .t xt

_U trunk/vendors/ baker/croi ssant.txt
UU trunk/vendors/ baker/pretzel.txt

331

Subversion Complete Reference

D trunk/vendors/baker/baguette.txt

Here's an example that shows arevision in which afile was renamed:

$ svnl ook changed -r 64 /var/svn/repos
A trunk/vendors/ baker/toast.txt
D trunk/vendors/ baker/bread. t xt

Unfortunately, nothing in the preceding output reveals the connection between the deleted and added files. Usethe - - copy-i nf o
option to make this relationship more apparent:

$ svnl ook changed -r 64 --copy-info /var/svn/repos

A + trunk/vendors/ baker/toast.txt
(fromtrunk/vendors/ baker/bread.txt:r63)

D trunk/vendors/baker/ bread.t xt

332

Subversion Complete Reference

Name
svnlook date — Print the datestamp.

Synopsis

svnl ook date REPOS PATH

Description

Print the datestamp of arevision or transaction in a repository.
Options

--revision (-r) REV

--transaction (-t) TXN

Examples

This shows the date of revision 40 of atest repository:

$ svnl ook date -r 40 /var/svn/repos/
2003-02-22 17:44:49 -0600 (Sat, 22 Feb 2003)

333

Subversion Complete Reference

Name

svnlook diff — Print differences of changed files and properties.
Synopsis
svnl ook diff REPOS PATH

Description

Print GNU-style differences of changed files and propertiesin arepository.

Options

--diff-copy-from
--no-diff-added
--no-di ff-deleted
--revision (-r) REV
--transaction (-t) TXN
--extensions (-x) ARG

Examples

This shows a newly added (empty) file, a deleted file, and a copied file:

$ svnlook diff -r 40 /var/svn/repos/
Copi ed: egg.txt (fromrev 39, trunk/vendors/deli/pickle.txt)

Added: trunk/vendors/deli/soda.txt

Modi fi ed: trunk/vendors/deli/sandw ch. t xt

--- trunk/vendors/deli/sandw ch.txt (original)

+++ trunk/vendors/deli/sandw ch.txt 2003-02-22 17:45: 04. 000000000 -0600
@-0,0 +1 @@

+Don't forget the mayo!

Modi fi ed: trunk/vendors/deli/logo.jpg

(Binary files differ)

Del et ed: trunk/vendors/deli/chips.txt

Del et ed: trunk/vendors/deli/ pickle.txt

If afile has anontextual svn: m ne-t ype property, the differences are not explicitly shown.

334

Subversion Complete Reference

Name

svnlook dirs-changed — Print the directories that were themselves changed.
Synopsis
svnl ook dirs-changed REPOS_PATH

Description

Print the directories that were themselves changed (property edits) or whose file children were changed.
Options

--revision (-r) REV

--transaction (-t) TXN

Examples

This shows the directories that changed in revision 40 in our sample repository:

$ svnl ook dirs-changed -r 40 /var/svn/repos
trunk/ vendor s/ deli/

335

Subversion Complete Reference

Name
svnlook help (h, ?) — Help!

Synopsis
Al so svnl ook -h and svnl ook -7?.
Description

Displays the help message for svnlook. This command, like its brother, svn help, is also your friend, even though you never call it
anymore and forgot to inviteit to your last party.

Options

None

336

Subversion Complete Reference

Name

svnlook history — Print information about the history of a path in the repository (or the root directory if no path is supplied).
Synopsis

svnl ook history REPOS_PATH [PATH | N_REPCS]

Description

Print information about the history of a path in the repository (or the root directory if no path is supplied).

Options

--limt (-1) NUM
--revision (-r) REV
--showids

Examples

This shows the history output for the path / br anches/ bookst or e as of revision 13 in our sample repository:

$ svnl ook history -r 13 /var/svn/repos /branches/bookstore --showids
REVI SI ON PATH <I D>
13 / branches/ bookst ore <1.1.r13/390>
12 / branches/ bookstore <1.1.r12/413>
11 / branches/ bookstore <1.1.r11/0>
9 /trunk <1.0.r9/551>

/trunk <1.0.r8/131357096>
7 /trunk <1.0.r7/294>
6 /trunk <1.0.r6/353>
5 /trunk <1.0.r5/349>
4 /trunk <1.0.r4/332>
3 /trunk <1.0.r3/335>
2 /trunk <1.0.r2/295>
1 /trunk <1.0.r1/532>

337

Subversion Complete Reference

Name

svnlook info — Print the author, datestamp, log message size, and log message.

Synopsis

svnl ook i nfo REPOS PATH

Description

Print the author, datestamp, log message size (in bytes), and log message, followed by a newline character.
Options

--revision (-r) REV

--transaction (-t) TXN

Examples

This shows the info output for revision 40 in our sample repository:

$ svnlook info -r 40 /var/svn/repos

sally

2003-02-22 17:44:49 -0600 (Sat, 22 Feb 2003)
16

Rear range | unch.

338

Subversion Complete Reference

Name

svnlook lock — If alock exists on apath in the repository, describeit.

Synopsis

svnl ook | ock REPCS_PATH PATH_ | N_REPCS

Description

Print all information available for the lock at PATH | N_REPGCS. If PATH | N_REPCS is not locked, print nothing.
Options

None

Examples

This describesthe lock onthefilet r ee. j pg:

$ svnl ook | ock /var/svn/repos tree.jpg

UUI D Token: opaquel ockt oken: ab00ddf O- 6af b- 0310- 9cd0- dda813329753
Owner: harry

Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005)

Expi res:

Comment (1 line):
Rewor k t he uppernost branches on the bald cypress in the foreground.

339

Subversion Complete Reference

Name

svnlook log — Print the log message, followed by a newline character.
Synopsis

svnl ook | og REPOS_PATH

Description

Print the log message.

Options

--revision (-r) REV

--transaction (-t) TXN

Examples

This shows the log output for revision 40 in our sample repository:

$ svnl ook | og /var/svn/repos/
Rear range | unch.

Subversion Complete Reference

Name
svnlook propget (pget, pg) — Print the raw value of a property on a path in the repository.

Synopsis

svnl ook propget REPCS PATH PROPNAME [PATH | N REPCS]
Description

List the value of a property on a path in the repository.

Options

--revision (-r) REV

--revprop

--transaction (-t) TXN

Examples

This shows the value of the “seasonings’ property on thefile/ t r unk/ sandwi ch in the HEAD revision:

$ svnl ook pg /var/svn/repos seasoni ngs /trunk/sandw ch
nmust ar d

341

Subversion Complete Reference

Name

svnlook proplist (plist, pl) — Print the names and values of versioned file and directory properties.
Synopsis
svnl ook proplist REPOS_PATH [PATH | N_REPQOS]

Description

List the properties of a path in the repository. With - - ver bose (- v), show the property values too.

Options

--revision (-r) REV
--revprop
--transaction (-t) TXN
--verbose (-v)

--xm

Examples

This shows the names of properties set on thefile/ t r unk/ READVE in the HEAD revision:

$ svnl ook proplist /var/svn/repos /trunk/ READVE
ori gi nal - aut hor
svn: m me-type

Thisisthe same command as in the preceding example, but this time showing the property values as well:
$ svnlook -v proplist /var/svn/repos /trunk/ READVE

original-author : harry
svn:mne-type : text/plain

342

Subversion Complete Reference

Name

svnlook tree — Print the tree.
Synopsis
svnl ook tree REPOS PATH [PATH | N REPCS]

Description

Print the tree, starting at PATH | N_REPGS (if supplied; at the root of the tree otherwise), optionally showing node revision IDs.

Options

--full-paths
--non-recursive (-N)
--revision (-r) REV
--showids
--transaction (-t) TXN

Example

This shows the tree output (with nodel Ds) for revision 13 in our sample repository:

$ svnlook tree -r 13 /var/svn/repos --showids
/ <0.0.r13/811>
trunk/ <1.0.r9/551>
button.c <2.0.r9/ 238>
Makefile <3.0.r7/41>
i nteger.c <4.0.r6/98>
branches/ <5.0.r13/593>
bookstore/ <1.1.r13/390>
button.c <2.1.r12/85>
Makefile <3.0.r7/41>
i nteger.c <4.1.r13/109>

Subversion Complete Reference

Name
svnlook uuid — Print the repository's UUI D.

Synopsis
svnl ook uui d REPOS PATH
Description

Print the UUI Dfor the repository. The UUI Disthe repository's universal unique identifier. The Subversion client uses this identifier
to differentiate between one repository and ancther.

Options
None
Examples

$ svnl ook uuid /var/svn/repos
e7f elb91- 8cd5- 0310- 98dd- 2f 12e793c5e8

Subversion Complete Reference

Name

svnlook youngest — Print the youngest revision number.
Synopsis

svnl ook youngest REPOS PATH

Description

Print the youngest revision number of arepository.
Options

None

Examples

This shows the youngest revision of our sample repository:

$ svnl ook youngest /var/svn/repos/
42

svnsync—Subversion Repository Mirroring

svnsync is the Subversion remote repository mirroring tool. Put simply, it allows you to replay the revisions of one repository into
another one.

Inany mirroring scenario, there aretwo repositories. the source repository, and the mirror (or “sink™) repository. The sourcerepository
isthe repository from which svnsync pullsrevisions. The mirror repository isthe destination for the revisions pulled from the source
repository. Each of the repositories may be local or remote—they are only ever addressed by their URLSs.

The svnsync processrequires only read accessto the sourcerepository; it never attemptsto modify it. But obviously, svnsync requires

both read and write access to the mirror repository.

svnsyncisvery sensitive to changes madein the mirror repository that weren't made as part of amirroring operation. To
Q prevent thisfrom happening, it'sbest if the svnsync processisthe only process permitted to modify the mirror repository.

svnsync Options

Optionsin svnsync are global, just asthey arein svn and svnadmin:
--config-dir DR

Instructs Subversion to read configuration information from the specified directory instead of the default location
(. subver si on inthe user's home directory).

--no- aut h-cache

Prevents caching of authentication information (e.g., username and password) in the Subversion runtime configuration
directories.

Subversion Complete Reference

--non-interactive

Inthe case of an authentication failure or insufficient credential's, prevents prompting for credentials (e.g., usernameor password).
Thisis useful if you're running Subversion inside an automated script and it's more appropriate to have Subversion fail than to
prompt for more information.

--quiet (-q)
Requests that the client print only essential information while performing an operation.
- - sour ce- passwor d PASSVWD

Specifies the password for the Subversion server from which you are syncing. If not provided, or if incorrect, Subversion will
prompt you for thisinformation as needed.

--sour ce- user name NAMVE

Specifies the username for the Subversion server from which you are syncing. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

- - sync- passwor d PASSWD

Specifies the password for the Subversion server to which you are syncing. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

--sync- user nanme NAVE

Specifies the username for the Subversion server to which you are syncing. If not provided, or if incorrect, Subversion will
prompt you for thisinformation as needed.

--trust-server-cert

Used with - - non-i nt er act i ve to accept any unknown SSL server certificates without prompting.

svnsync Subcommands

Here are the various subcommands for the svnsync program.

346

Subversion Complete Reference

Name

svnsync copy-revprops — Copy all revision properties for a particular revision (or range of revisions) from the source repository
to the mirror repository.

Synopsis
svnsync copy-revprops DEST_URL [REV[: REV2]]

Description

Because Subversion revision properties can be changed at any time, it's possible that the propertiesfor somerevision might be changed
after that revision has already been synchronized to another repository. Because the svnsync synchronize command operates only
on therange of revisionsthat have not yet been synchronized, it won't notice arevision property change outside that range. Left asis,
this causes adeviation in the values of that revision's properties between the source and mirror repositories. svnsync copy-revprops
is the answer to this problem. Use it to resynchronize the revision properties for a particular revision or range of revisions.

Options

--config-dir DR

- -no- aut h-cache
--non-interactive
--quiet (-q)
--sour ce- password ARG
--source-username ARG
--sync- password ARG
--sync-username ARG
--trust-server-cert

Examples

Resynchronize revision properties for asingle revision:

$ svnsync copy-revprops file:///var/svn/repos-mrror 6
Copi ed properties for revision 6.

347

Subversion Complete Reference

Name
svnsync help — Help!

Synopsis

svnsync hel p

Description

This subcommand is useful when you're trapped in a foreign prison with neither a Net connection nor a copy of this book, but you
do have alocal Wi-Fi network running and you'd like to sync a copy of your repository over to the backup server that Ira The Knife
isrunning over in cell block D.

Options

None

Subversion Complete Reference

Name

svnsync info — Print information about the synchronization of a destination repository.
Synopsis

svnsync info DEST_URL

Description

Print the synchronization source URL, source repository UUID and the last revision merged from the source to the destination
repository at DEST_URL.

Options

--config-dir DR

- -no- aut h-cache
--non-interactive
--sour ce- password ARG
--source-username ARG
--sync- password ARG
--sync-username ARG
--trust-server-cert

Examples

Print the synchronization information of a mirror repository:

$ svnsync info file:///var/svn/repos-mrror

Source URL: http://svn.exanpl e.conirepos

Source Repository UUI D e7felb91-8cd5-0310-98dd- 2f 12e793c5e8
Last Merged Revision: 47

$

349

Subversion Complete Reference

Name

svnsync initialize (init) — Initialize amirror repository for synchronization from the source repository.
Synopsis
svnsync initialize M RROR_URL SOURCE_URL

Description

svnsync initialize verifies that a repository meets the requirements of a new mirror repository—that it has no previous existing
version history and that it allows revision property modifications—and records the initial administrative information that associates
the mirror repository with the source repository (specified by SOURCE _URL). Thisisthefirst synsync operation you run on awould-
be mirror repository.

Ordinarily, SOURCE_URL isthe URL of theroot directory of the Subversion repository you wish to mirror. Subversion 1.5 and newer
allow you to use svnsync for partial repository mirroring, though — simply specify the URL of the source repository subdirectory
you wish to mirror as SOURCE_URL.

Options

--config-dir DIR

- - no- aut h- cache
--non-interactive
--quiet (-q)
--sour ce- password ARG
--sour ce-usernane ARG
--sync- password ARG
--sync- usernanme ARG
--trust-server-cert

Examples

Fail toinitialize amirror repository due to inability to modify revision properties:

$ svnsync initialize file:///var/svn/repos-mrror http://svn.exanple.conlrepos
svnsync: Repository has not been enabled to accept revision propchanges;

ask the adm nistrator to create a pre-revprop-change hook

$

Initialize arepository asamirror, having already created apr e- r evpr op- change hook that permitsall revision property changes:

$ svnsync initialize file:///var/svn/repos-mrror http://svn.exanple.conlrepos
Copi ed properties for revision O.
$

350

Subversion Complete Reference

Name

svnsync synchronize (sync) — Transfer al pending revisions from the source repository to the mirror repository.
Synopsis

svnsync synchroni ze DEST_URL

Description

The svnsync synchronize command does all the heavy lifting of arepository mirroring operation. After consulting with the mirror
repository to see which revisions have already been copied into it, it then begins to copy any not-yet-mirrored revisions from the
source repository.

svnsync synchronize can be gracefully canceled and restarted.

Options

--config-dir DR

- - no- aut h- cache
--non-interactive
--quiet (-q)

--sour ce-password ARG
--sour ce-username ARG
--sync-password ARG
--sync- username ARG
--trust-server-cert

Examples

Copy unsynchronized revisions from the source repository to the mirror repository:

$ svnsync synchroni ze file:///var/svn/repos-mrror
Conmitted revision 1.

Copi ed properties for revision 1.

Conmitted revision 2.

Copi ed properties for revision 2.

Conmitted revision 3.

Copi ed properties for revision 3.

Conmitted revision 45.

Copi ed properties for revision 45.
Conmitted revision 46.

Copi ed properties for revision 46.
Conmitted revision 47.

Copi ed properties for revision 47.
$

svnserve—Custom Subversion Server

svnserve allows access to Subversion repositories using Subversion's custom network protocol.

351

Subversion Complete Reference

Y ou can run svnserve as a standal one server process (for clientsthat are using thesvn: / / access method); you can have a daemon
such as inetd or xinetd launch it for you on demand (also for svn: / /), or you can have sshd launch it on demand for the svn
+ssh: // access method.

Regardl ess of the access method, oncethe client has selected arepository by transmitting itsURL, svnservereadsafilenamed conf /
svnserve. conf intherepository directory to determine repository-specific settings such as what authentication database to use
and what authorization policiesto apply. Seethe section called “ svnserve, aCustom Server” for detailsof thesvnser ve. conf file.

svnserve Options

Unlike the previous commands we've described, svnserve has no subcommands—it is controlled exclusively by options.
- -daenon (- d)

Causes svnserve to run in daemon mode. svnserve backgrounds itself and accepts and serves TCP/IP connections on the svn
port (3690, by default).

--foreground

When used together with - d, causes svnserveto stay in the foreground. Thisis mainly useful for debugging.
--inetd(-i)

Causes svnserveto usethe st di n and st dout file descriptors, asis appropriate for a daemon running out of inetd.
--hel p (-h)

Displays a usage summary and exits.
--listen-host HOST

Causes svnserve to listen on the interface specified by HOST, which may be either a hostname or an | P address.
--listen-once (- X)

Causes svnser ve to accept one connection on the svn port, serve it, and exit. This option is mainly useful for debugging.
--listen-port PORT

Causes svnser ve to listen on PORT when run in daemon mode. (FreeBSD daemons listen only on tcp6 by default—this option
tells them to also listen on tcp4.)

--1og-fil eFl LENAVE

Instructs svnserve to create (if necessary) and use the file located at FI LENANME for Subversion operational log output of the
same sort that mod_dav_svn generates. See the section called “High-level Logging” for details.

--pid-fileFl LENAME
Causes svnserve to write its process ID to FI LENAME, which must be writable by the user under which svnserveis running.
--root (-r)ROOT

Setsthevirtual root for repositories served by svnserve. The pathnamein URL s provided by the client will beinterpreted relative
to thisroot and will not be allowed to escape this root.

--threads (-T)

When running in daemon mode, causes svnserve to spawn a thread instead of a process for each connection (e.g., for when
running on Windows). The svnser ve process still backgrounds itself at startup time.

352

Subversion Complete Reference

--tunnel (-t)

Causes svnserve to run in tunnel mode, which isjust like the inetd mode of operation (both modes serve one connection over
st di n/st dout , and then exit), except that the connection is considered to be preauthenti cated with the username of the current
UID. Thisflag is automatically passed for you by the client when running over a tunnel agent such as ssh. That means there's
rarely any need for you to passthis option to svnserve. So, if you find yourself typing svnser ve - -t unnel onthecommand
line and wondering what to do next, see the section called “ Tunneling over SSH”.

--tunnel -user NAME

Used in conjunction with the - - t unnel option, tells svnserve to assume that NAVE is the authenticated user, rather than the
UID of the svnserve process. Thisisuseful for users wishing to share asingle system account over SSH, but to maintain separate
commit identities.

--version

Displays version information and alist of repository backend modules available, and then exits.

svndumpfilter—Subversion History Filtering

svndumpfilter is a command-line utility for removing history from a Subversion dump file by either excluding or including paths
beginning with one or more named prefixes. For details, see the section called “ svndumpfilter”.

svndumpfilter Options

Optionsin svndumpfilter are global, just asthey are in svn and svnadmin:
--drop-enpty-revs

If filtering causes any revision to be empty (i.e., causes no change to the repository), removes these revisions from the final
dump file.

--renunber-revs
Renumbers revisions that remain after filtering.
- -ski p- m ssi ng- mer ge- sour ces

Skips merge sources that have been removed as part of the filtering. Without this option, svndumpfilter will exit with an error
if the merge source for aretained path is removed by filtering.

- - preserve-revprops

If al nodes in a revision are removed by filtering and - - dr op- enpt y-revs is not passed, the default behavior of
svhdumpfilter isto remove al revision properties except for the date and the log message (which will merely indicate that the
revision is empty). Passing this option will preserve existing revision properties (which may or may not make sense since the
related content is no longer present in the dump file).

--targets FI LENAME

Instructs svndumpfilter to read additional path prefixes—one per line—from the file located at FI LENAME. Thisis especially
useful for complex filtering operations which require more prefixes than the operating system allows to be specified on asingle
command line.

- - qui et

Does not display filtering statistics.

353

Subversion Complete Reference

svndumpfilter Subcommands

Here are the various subcommands for the svndumpfilter program.

354

Subversion Complete Reference

Name

svndumpfilter exclude — Filter out nodes with given prefixes from the dump stream.
Synopsis

svndunpfilter exclude PATH PREFI X. ..

Description

This can be used to exclude nodes that begin with one or more PATH_PREFI Xes from afiltered dump file.

Options

--drop-enpty-revs
--preserve-revprops

- - qui et

- -renunber-revs

- - ski p- m ssi ng- mer ge- sour ces
--targets ARG

Examples

If we have a dump file from arepository with a number of different picnic-related directoriesin it, but we want to keep everything
except the sandwi ches part of the repository, we'll exclude only that path:

$ svndunpfilter exclude sandwi ches < dumpfile > filtered-dunpfile
Excl udi ng prefixes:
'/ sandwi ches'’

Revision 0 conmitted as O.
Revision 1 conmitted as 1.
Revision 2 conmitted as 2.
Revision 3 conmitted as 3.
Revision 4 conmitted as 4.

Dropped 1 node(s):
'/ sandwi ches'

355

Subversion Complete Reference

Name

svndumpfilter include — Filter out nodes without given prefixes from dump stream.
Synopsis

svndunpfilter include PATH PREFI X. ..

Description

Can be used to include nodes that begin with one or more PATH_PREFI Xesin afiltered dump file (thus excluding all other paths).

Options

--drop-enpty-revs
--preserve-revprops

- - qui et

- -renunber-revs

- - ski p- m ssi ng- mer ge- sour ces
--targets ARG

Example

If we have a dump file from a repository with a number of different picnic-related directories in it, but want to keep only the
sandw ches part of the repository, we'll include only that path:

$ svndunpfilter include sandwi ches < dumpfile > filtered-dunpfile
I ncl udi ng prefixes:
'/ sandwi ches'’

Revision 0 conmitted as O.
Revision 1 conmitted as 1.
Revision 2 conmitted as 2.
Revision 3 conmitted as 3.
Revision 4 conmitted as 4.

Dr opped 3 node(s):
"/drinks'
'/ snacks'
"/ supplies’

356

Subversion Complete Reference

Name
svndumpfilter help — Help!

Synopsis
svndunpfilter help [SUBCOWAND. . .]
Description

Displaysthe help message for svndumpfilter. Unlike other help commands documented in this chapter, thereis no witty commentary
for this help command. The authors of this book deeply regret the omission.

Options

None

svnversion—Subversion Working Copy Version Info

357

Subversion Complete Reference

Name

svnversion — Summarize the local revision(s) of aworking copy.
Synopsis
svnversion [OPTI ONS] [WC PATH [TRAI L_URL]]

Description

svnversion isaprogram for summarizing the revision mixture of aworking copy. The resultant revision number, or revision range,
iswritten to standard output.

It's common to use this output in your build process when defining the version number of your program.

TRAI L_URL, if present, is the trailing portion of the URL used to determine whether WC PATH itself is switched (detection of
switches within WC_PATH does not rely on TRAI L_URL).

When WC_PATH is not defined, the current directory will be used as the working copy path. TRAI L_URL cannot be defined if
WC PATHisnot explicitly given.

Options
Like svnserve, svnversion has no subcommands—only options:
--no-new i ne (- n)
Omits the usua trailing newline from the output.
--conmitted (-c)
Uses the last-changed revisions rather than the current (i.e., highest locally available) revisions.
--hel p (-h)
Prints a help summary.
--version

Prints the version of svnversion and exit with no error.

Examples

If the working copy isdll at the same revision (e.g., immediately after an update), then that revision is printed out:

$ svnversion

4168

You can add TRAI L__URL to make sure the working copy is not switched from what you expect. Note that the WC_PATH isrequired

in this command:

$ svnversion . /var/svn/trunk
4168

358

Subversion Complete Reference

For a mixed-revision working copy, the range of revisions present is printed:

$ svnversion

4123: 4168

If the working copy contains modifications, atrailing 'M is added:

$ svnversion

4168M

If the working copy is switched, atrailing 'S’ is added:

$ svnversion

4168S

svnversion will also inform you if the target working copy is sparsely populated (see the section called “ Sparse Directories’) by
attaching the 'P' code to its output:

$ svnversion

4168P

Thus, here is amixed-revision, sparsely populated and switched working copy containing some local modifications:

$ svnversion

4123: 4168NMBP

If invoked on a directory that is not aworking copy, svnversion assumesit is an exported working copy and prints “exported”:

$ svnversion
exported

mod_dav_svn—Subversion Apache HTTP Server
Module

359

Subversion Complete Reference

Name
mod_dav_svn Configuration Directives — Apache configuration directives for serving Subversion repositories through the Apache
HTTP Server.

Description

This section briefly describes each Subversion Apache configuration directive. For an in-depth description of configuring Apache
with Subversion, see the section called “httpd, the Apache HTTP Server”.

Directives
These aretheht t pd. conf directivesthat apply to mod_dav_svn:

DAV svn

Must be included in any Di rect ory or Locat i on block for a Subversion repository. It tells httpd to use the Subversion
backend for nrod_dav to handle al requests.

SVNActivitiesDB directory-path

Specifies the location in the filesystem where the activities database should be stored. By default, mod_dav_svn creates and
uses adirectory in the repository called dav/ acti vi ti es. d. The path specified with this option must be an absolute path.

If specified for an SVNPar ent Pat h area, mod_dav_svn appends the basename of the repository to the path specified here.
For example:

<Location /svn>
DAV svn

any "/svn/foo" URL will map to a repository in
I net/svn.nfs/repositories/foo
SVNPar ent Pat h "/ net/svn.nfs/repositories"

any "/svn/foo" URL will map to an activities db in
[/var/db/svn/activities/foo
SVNActivitiesDB "/var/db/svn/activities"

</ Locati on>

SVNAI | owBul kUpdates On| O f

Toggles support for al-inclusive responses to update-style REPORT requests. Subversion clients use REPORT requests to get
information about directory tree checkouts and updates from mod_dav_svn. They can ask the server to send that information in
one of two ways: with the entirety of the tree's information in one massive response, or with a skelta (a skeletal representation
of atree delta) which contains just enough information for the client to know what additional data to request from the server.
When thisdirectiveisincluded withavalue of Of f , mod_dav_svn will only ever respond to these REPORT requests with skelta
responses, regardless of the type of responses requested by the client.

Most folkswon't need to usethisdirective at al. It primarily exists for administrators who wish—for security or auditing reasons
—to force Subversion clientsto fetch individually all the files and directories needed for updates and checkouts, thus leaving an
audit trail of GET and PROPFI ND requestsin Apache'slogs. The default value of this directiveis On.

SVNAuUt over si oni ng On| OF f

When its value is On, allows write requests from WebDAYV clients to result in automatic commits. A generic log message is
auto-generated and attached to each revision. If you enable autoversioning, you'll likely want to set ModM neUsePat hl nf o

360

Subversion Complete Reference

On sothat nod_mi e can set svn: m nme-t ype to the correct MIME type automatically (as best asnmod_m ne isableto, of
course). For more information, see Appendix C, WebDAV and Autoversioning. The default value of thisdirectiveis Of f .

SVNI ndexXSLT directory-path
Specifiesthe URI of an XSL transformation for directory indexes. Thisdirectiveis optional.
SVNLi st Parent Path On| OF f

When set to On, allows a GET of SVNPar ent Pat h, which resultsin alisting of al repositories under that path. The default
setting isOf f .

SVNMast er URI ur |
Specifies a URI to the master Subversion repository (used for awrite-through proxy).
SVNPar ent Pat h di rectory-path

Specifiesthelocation in thefilesystem of aparent directory whose child directories are Subversion repositories. In aconfiguration
block for a Subversion repository, either this directive or SVNPat h must be present, but not both.

SVNPat h directory-path

Specifies the location in the filesystem for a Subversion repository's files. In a configuration block for a Subversion repository,
either this directive or SYNPar ent Pat h must be present, but not both.

SVNPat hAut hz On| OF f | short _circuit

Controls path-based authorization by enabling subrequests (On), disabling subrequests (O f ; see the section called “ Disabling
path-based checks”), or querying mod_authz_svn directly (short _ci r cui t). The default value of thisdirectiveis On.

SVNReposNanme name

Specifies the name of a Subversion repository for usein HTTP GET responses. This value will be prepended to the title of all
directory listings (which are served when you navigate to a Subversion repository with aweb browser). Thisdirectiveisoptional.

SVNSpeci al URI conponent

Specifies the URI component (namespace) for special Subversion resources. The default is! svn, and most administrators will
never usethisdirective. Set thisonly if thereisapressing need to have afilenamed ! svn in your repository. If you change this
on aserver aready in use, it will break all of the outstanding working copies, and your users will hunt you down with pitchforks
and flaming torches.

mod_authz_svn—Subversion Apache HTTP
Authorization Module

361

Subversion Complete Reference

Name

mod_authz_svn Configuration Directives— Apache configuration directivesfor configuring path-based authorization for Subversion
repositories served through the Apache HTTP Server.

Description

This section briefly describes each Apache configuration directive offered by mod_authz_svn. For an in-depth description of using
path-based authorization in Subversion, see the section called “ Path-Based Authorization”.

Directives
These aretheht t pd. conf directivesthat apply to mod_authz_svn:
Aut hzFor ceUser nameCase Upper | Lower

Set to Upper or Lower to perform case conversion of the specified sort on the authenticated username before checking it for
authorization. While usernames are compared in a case-sensitive fashion against those referenced in the authorization rulesfile,
this directive can at least normalize variably-cased usernames into something consistent.

Aut hzSVNAccessFile file-path
Consult fi | e- pat h for access rules describing the permissions for pathsin Subversion repository.
Aut hzSVNAnonynous On| OF f

Setto O f to disabletwo special-case behaviours of thismodule: interaction withthe Sat i sfy Any directive and enforcement
of the authorization policy even when no Requi r e directives are present. The default value of thisdirectiveis On.

Aut hzSVNAut horitative On| OF f
Set to Of f to allow access control to be passed aong to lower modules. The default value of this directiveis On.
Aut hz SVNNoAut hWwhenAnonyrnousAl | owed On| OF f

Set to On to suppress authentication and authorization for requests which anonymous users are allowed to perform. The default
value of this directiveis On.

Subversion Properties

Subversion allows usersto invent arbitrarily named versioned properties on files and directories, aswell as unversioned properties on
revisions. The only restriction is on properties whose names begin with svn: (those are reserved for Subversion's own use). While
these properties may be set by users to control Subversion's behavior, users may not invent new svn: properties.

Versioned Properties

These are the versioned properties that Subversion reserves for its own use:
svn: execut abl e

If present on a file, the client will make the file executable in Unix-hosted working copies. See the section called “File
Executability”.

svn: m me-type

If present on afile, the value indicates the file's MIME type. This allows the client to decide whether line-based contextual
merging is safe to perform during updates, and can also affect how the file behaves when fetched via a web browser. See the
section called “File Content Type”.

362

Subversion Complete Reference

svn:ignore

If present on adirectory, the valueisalist of unversioned file patternsto be ignored by svn status and other subcommands. See
the section called “Ignoring Unversioned ltems’.

svn: keywor ds

If present on afile, the value tells the client how to expand particular keywords within the file. See the section called “Keyword
Substitution”.

svn: eol -style

If present on afile, the value tells the client how to manipulate the file's line-endings in the working copy and in exported trees.
See the section called “ End-of-Line Character Sequences’ and svn export earlier in this chapter.

svn: external s

If present on a directory, the valueis amultiline list of other paths and URL s the client should check out. See the section called
“Externals Definitions’.

svn: speci al
If present on afile, indicates that the fileis not an ordinary file, but a symbolic link or other special object.1
svn: needs- | ock

If present on afile, tells the client to make the file read-only in the working copy, as a reminder that the file should be locked
before editing begins. See the section called “Lock Communication”.

svn: nergei nfo

Used by Subversion to track merge data. See the section called “Mergeinfo and Previews’ for details, but you should never edit
this property unless you really know what you're doing.

Unversioned Properties

These are the unversioned properties that Subversion reserves for its own use:
svn: aut hor

If present, contains the authenti cated username of the person who created therevision. (If not present, the revision was committed
anonymously.)

svn: aut over si oned
If present, the revision was created via the autoversioning feature. See the section called “ Autoversioning”.
svn: date

Contains the UTC time the revision was created, in 1SO 8601 format. The value comes from the server machine's clock, not
the client's.

svn: | og

Contains the log message describing the revision.

IAs of thiswriti ng, symbolic links are indeed the only “special” objects. But there might be more in future releases of Subversion.

363

Subversion Complete Reference

svn: sync-currently-copying

Contains the revision number from the source repository which is currently being mirrored to this one by the svnsync tool. (This
property is only relevant when it appears on revision 0.)

svn: sync-fromuuid

Contains the UUID of the repository of which thisrepository has beeninitialized asamirror by the svnsync tool. (This property
isonly relevant when it appears on revision 0.)

svn: sync-fromurl

Contains the URL of the repository directory of which thisrepository has been initialized as a mirror by the svnsync tool. (This
property is only relevant when it appears on revision 0.)

svn: sync-| ast - nerged-rev

Contains the revision of the source repository which was most recently and successfully mirrored to this one. (This property is
only relevant when it appears on revision 0.)

svn: sync- | ock

Used to temporarily enforce mutually exclusive access to the repository by svnsync mirroring operations. This property is
generally only observed when such an operation is active—or when an svnsync command failed to cleanly disconnect from the
repository. (This property isonly relevant when it appears on revision 0.)

Repository Hooks

These are the repository hooks that Subversion provides:

364

Subversion Complete Reference

Name

start-commit — Notification of the beginning of a commit.

Description

The start-commit hook isrun before the commit transaction is even created. It istypically used to decide whether the user has commit
privileges at al.

If the start-commit hook program returns a nonzero exit value, the commit is stopped before the commit transaction is even created,
and anything printed to st der r ismarshalled back to the client.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:
1. Repository path

2. Authenticated username attempting the commit

3. Colon-separated list of capabilities that a client passesto the server, including dept h, mer gei nf o, and| og- r evpr ops (new
in Subversion 1.5).

Common uses
Access control (e.g., temporarily lock out commits for some reason).

A meansto allow access only from clients that have certain capabilities.

365

Subversion Complete Reference

Name

pre-commit — Notification just prior to commit completion.

Description

Thepr e- commi t hook isrun just before acommit transaction is promoted to anew revision. Typically, this hook is used to protect
against commits that are disallowed due to content or location (e.g., your site might require that all commits to a certain branch
include a ticket number from the bug tracker, or that the incoming log message is nonempty).

If the pr e- commi t hook program returns a nonzero exit value, the commit is aborted, the commit transaction is removed, and
anything printed to st der r is marshalled back to the client.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:
1. Repository path

2. Commit transaction name

Additionally, Subversion passes any lock tokens provided by the committing client to the hook script via standard input. When
present, these are formatted as a single line containing the string LOCK- TOKENS: , followed by additional lines—one per lock token
—which contain the lock token information. Each lock token information line consists of the URI-escaped repository filesystem path
associated with the lock, followed by the pipe (|) separator character, and finally the lock token string.

Common uses

Change validation and control

366

Subversion Complete Reference

Name

post-commit — Notification of a successful commit.

Description

Thepost - commi t hook is run after the transaction is committed and a new revision is created. Most people use this hook to send
out descriptive emails about the commit or to notify some other tool (such as an issue tracker) that a commit has happened. Some
configurations also use this hook to trigger backup processes.

If the post - commi t hook returns a nonzero exit status, the commit will not be aborted since it has already completed. However,
anything that the hook printed to st der r will be marshalled back to the client, making it easier to diagnose hook failures.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:
1. Repository path

2. Revision number created by the commit

Common uses

Commit notification; tool integration

367

Subversion Complete Reference

Name

pre-revprop-change — Notification of arevision property change attempt.

Description

Thepr e-r evpr op- change hook isrunimmediately prior to the modification of arevision property when performed outside the
scope of anormal commit. Unlike the other hooks, the default state of this oneisto deny the proposed action. The hook must actually
exist and return a zero exit value before a revision property modification can happen.

If thepr e- r evpr op- change hook doesn't exist, isn't executable, or returns a nonzero exit value, no change to the property will
be made, and anything printed to st der r is marshalled back to the client.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:
1. Repository path

2. Revision whose property is about to be modified

3. Authenticated username attempting the property change

4. Name of the property changed

5. Change description: A (added), D (deleted), or M(modified)

Additionally, Subversion passes the intended new value of the property to the hook program via standard input.

Common uses

Access control; change validation and control

368

Subversion Complete Reference

Name

post-revprop-change — Notification of a successful revision property change.
Description

The post - r evpr op- change hook is run immediately after the modification of arevision property when performed outside the
scope of anormal commit. Asyou can derive from the description of its counterpart, the pr e- r evpr op- change hook, this hook
will not run at all unless the pr e- r evpr op- change hook isimplemented. It is typically used to send email notification of the
property change.

If the post - r evpr op- change hook returns a nonzero exit status, the change will not be aborted since it has aready completed.
However, anything that the hook printedto st der r will be marshalled back to the client, making it easier to diagnose hook failures.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:
1. Repository path

2. Revision whose property was modified

3. Authenticated username of the person making the change

4. Name of the property changed

5. Change description: A (added), D (deleted), or M(modified)

Additionally, Subversion passes to the hook program, via standard input, the previous value of the property.

Common uses

Property change notification

369

Subversion Complete Reference

Name

pre-lock — Notification of apath lock attempt.

Description

Thepr e- | ock hook runs whenever someone attempts to lock a path. It can be used to prevent locks altogether or to create amore
complex policy specifying exactly which users are allowed to lock particular paths. If the hook notices a preexisting lock, it can also
decide whether a user is allowed to “steal” the existing lock.

If thepr e- | ock hook program returnsanonzero exit value, thelock action isaborted and anything printedto st der r ismarshalled
back to the client.

The hook program may optionally dictate the lock token which will be assigned to the lock by printing the desired lock token to
standard output. Because of this, implementations of this hook should carefully avoid unexpected output sent to standard output.

token fallsto the scriptitself. Failure to generate unique lock tokens may result in undefined—and very likely, undesired

If the pr e- | ock script takes advantage of lock token dictation feature, the responsibility of generating a unique lock
Q —behavior.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:
1. Repository path

2. Versioned path that isto be locked

3. Authenticated username of the person attempting the lock

4. Comment provided when the lock was created

5. 1if the user is attempting to steal an existing lock; O otherwise

Common uses

Access control

370

Subversion Complete Reference

Name

post-lock — Notification of a successful path lock.

Description
Thepost - | ock hook runs after one or more paths have been locked. It istypically used to send email notification of thelock event.

If thepost - | ock hook returns anonzero exit status, the lock will not be aborted sinceit has already compl eted. However, anything
that the hook printed to st der r will be marshalled back to the client, making it easier to diagnose hook failures.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Authenticated username of the person who locked the paths

Additionally, the list of paths locked is passed to the hook program via standard input, one path per line.
Common uses

Lock notification

371

Subversion Complete Reference

Name

pre-unlock — Notification of a path unlock attempt.

Description

The pr e- unl ock hook runs whenever someone attempts to remove alock on afile. It can be used to create policies that specify
which users are alowed to unlock particular paths. It's particularly important for determining policies about lock breakage. If user
A locks afile, is user B allowed to break the lock? What if the lock is more than a week old? These sorts of things can be decided
and enforced by the hook.

If the pr e- unl ock hook program returns a nonzero exit value, the unlock action is aborted and anything printed to st derr is
marshalled back to the client.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:
1. Repository path

2. Versioned path which isto be unlocked

3. Authenticated username of the person attempting the unlock

4. Lock token associated with the lock which isto be removed

5. 1 if the user is attempting to break the lock; O otherwise

Common uses

Access control

372

Subversion Complete Reference

Name

post-unlock — Notification of a successful path unlock.

Description

The post - unl ock hook runs after one or more paths have been unlocked. It is typically used to send email notification of the
unlock event.

If the post - unl ock hook returns a nonzero exit status, the unlock will not be aborted since it has already completed. However,
anything that the hook printed to st der r will be marshalled back to the client, making it easier to diagnose hook failures.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Authenticated username of the person who unlocked the paths

Additionally, the list of paths unlocked is passed to the hook program via standard input, one path per line.
Common uses

Unlock notification

373

Appendix A. Subversion Quick-Start Guide

If you're eager to get Subversion up and running (and you enjoy learning by experimentation), this appendix will show you how to
create a repository, import code, and then check it back out again as a working copy. Along the way, we give links to the relevant
chapters of this book.

If you're new to the entire concept of version control or to the “copy-modify-merge” model used by both CVS and
° Subversion, you should read Chapter 1, Fundamental Concepts before going any further.

Installing Subversion

Subversion is built on a portability layer called APR—the Apache Portable Runtime library. The APR library provides all the
interfaces that Subversion needs to function on different operating systems: disk access, network access, memory management, and
so on. While Subversionisableto use Apache HTTP Server (or, httpd) asone of its network server programs, its dependence on APR
does not mean that httpd is a required component. APR is a standalone library usable by any application. It does mean, however,
that Subversion clients and servers run on any operating system that httpd runs on: Windows, Linux, all flavors of BSD, Mac OS
X, NetWare, and others.

The easiest way to get Subversion is to download a binary package built for your operating system. Subversion's web site (http://
subversion.apache.org) often has these packages available for download, posted by volunteers. The site usually contains graphical
installer packagesfor users of Microsoft operating systems. If you run aUnix-like operating system, you can use your system's native
package distribution system (RPMs, DEBS, the ports tree, etc.) to get Subversion.

Alternatively, you can build Subversion directly from source code, though it's not always an easy task. (If you're not experienced at
building open source software packages, you're probably better off downloading a binary distribution instead!) From the Subversion
web site, download the latest source code release. After unpacking it, follow the instructions in the | NSTALL file to build it. Note
that a released source package may not contain everything you need to build a command-line client capable of talking to a remote
repository. Starting with Subversion 1.4 and later, the libraries Subversion depends on (apr, apr-util, and neon) are distributed in a
separate source package suffixed with - deps. These libraries are now common enough that they may aready be installed on your
system. If not, you'll need to unpack the dependency package into the same directory where you unpacked the main Subversion
source. Regardless, it's possible that you may want to fetch other optional dependencies such as Berkeley DB and possibly Apache
httpd. If you want to do a complete build, make sure you have al of the packages documented in the | NSTALL file.

If you're one of those folksthat likes to use bl eeding-edge software, you can also get the Subversion source code from the Subversion
repository in which it lives. Obviously, you'll need to already have a Subversion client on hand to do this. But once you do, you can
check out aworking copy from http://svn.apache.org/repos/asf/subversi on:

$ svn checkout http://svn.apache. org/repos/asf/subversion/trunk subversion
A subver si on/ HACKI NG

A subver si on/ | NSTALL

A subver si on/ README

A subver si on/ aut ogen. sh

A subver si on/ bui I d. conf

The preceding command will create a working copy of the latest (unreleased) Subversion source code into a subdirectory named
subver si on inyour current working directory. You can adjust that last argument as you see fit. Regardless of what you call the

INote that the URL checked out in the example ends not with subver si on, but with a subdirectory thereof called t r unk. See our discussion of Subversion's
branching and tagging model for the reasoning behind this.

374

http://subversion.apache.org
http://subversion.apache.org
http://svn.apache.org/repos/asf/subversion

Subversion Quick-Start Guide

new working copy directory, though, after this operation completes, you will now have the Subversion source code. Of course, you
will still need to fetch afew helper libraries (apr, apr-util, etc.)—seethe | NSTALL fileinthetop level of the working copy for details.

High-Speed Tutorial

“Please make sure your seat backs are in their full, upright position and that your tray tables are stored. Flight
attendants, prepare for take-off...."

What followsisaquick tutorial that walks you through some basic Subversion configuration and operation. When you finish it, you
should have a general understanding of Subversion'stypical usage.

administrative tool, ready to go on a Unix-like operating system. (This tutorial also works at the Windows command-
line prompt, assuming you make some obvious tweaks.) We also assume you are using Subversion 1.2 or later (run
svn --ver si on to check).

: The examples used in this appendix assume that you have svn, the Subversion command-line client, and svnadmin, the

Subversion stores all versioned datain a central repository. To begin, create a new repository:

$ cd /var/svn

$ svnadnin create repos

$ I's repos

conf/ dav/ db/ format hooks/ |ocks/ ~README. t xt
$

This command creates a Subversion repository in the directory / var / svn/ r epos, creating ther epos directory itself if it doesn't
already exist. This directory contains (among other things) a collection of database files. Y ou won't see your versioned files if you
peek inside. For more information about repository creation and maintenance, see Chapter 5, Repository Administration.

Subversion has no concept of a“project.” Therepository isjust avirtua versioned filesystem, alarge tree that can hold anything you
wish. Some administrators prefer to store only one project in arepository, and others prefer to store multiple projectsin arepository
by placing them into separate directories. We discuss the merits of each approach in the section called “Planning Y our Repository
Organization”. Either way, the repository manages only files and directories, so it's up to humans to interpret particular directories
as “projects.” So while you might see references to projects throughout this book, keep in mind that we're only ever talking about
some directory (or collection of directories) in the repository.

In this example, we assume you already have some sort of project (a collection of files and directories) that you wish to import into
your newly created Subversion repository. Begin by organizing your data into a single directory called mypr oj ect (or whatever
you wish). For reasons explained in Chapter 4, Branching and Merging, your project's tree structure should contain three top-level
directories named br anches, t ags, andt r unk. Thet r unk directory should contain al of your data, and the br anches and
t ags directories should be empty:

tmp/
myproject/

branches/

tags/

trunk/
foo.c
bar.c
Makefile

Thebr anches, t ags, andt r unk subdirectories aren't actually required by Subversion. They're merely a popular convention that
you'll most likely want to use later on.

375

Subversion Quick-Start Guide

Once you have your tree of data ready to go, import it into the repository with the svn import command (see the section called
“Getting Datainto Y our Repository”):

$ svn inmport /tnp/nyproject file:///var/svn/repos/nyproject \
-m"initial inport"

Addi ng [t mp/ nyproj ect/ branches

Addi ng /tmp/ nyproj ect/tags

Addi ng /tmp/ nyproj ect/trunk

Addi ng /tmp/ nyproj ect/trunk/foo.c
Addi ng /tmp/ nyproj ect/trunk/bar.c
Addi ng /tmp/ nyproj ect/trunk/ Makefile

Conmitted revision 1.
$

Now the repository contains this tree of data. As mentioned earlier, you won't see your files by directly peeking into the repository;
they're all stored within adatabase. But the repository'simaginary filesystem now contains atop-level directory named nypr oj ect ,
which in turn contains your data.

Note that the original / t np/ mypr oj ect directory is unchanged; Subversion is unaware of it. (In fact, you can even delete that
directory if you wish.) To start manipulating repository data, you need to create a new “working copy” of the data, a sort of private
workspace. Ask Subversion to “check out” aworking copy of the mypr oj ect / t r unk directory in the repository:

$ svn checkout file:///var/svn/repos/nyproject/trunk nyproject
A nmypr oj ect/foo.c

A nmypr oj ect/ bar.c

A nmypr oj ect/ Makefil e

Checked out revision 1.
$

Now you have apersonal copy of part of the repository in anew directory named ny pr oj ect . Y ou can edit thefilesin your working
copy and then commit those changes back into the repository.

 Enter your working copy and edit afile's contents.

* Runsvn diff toseeunified diff output of your changes.

* Runsvn conmit tocommit the new version of your file to the repository.

* Runsvn updat e to bring your working copy “up to date” with the repository.

For afull tour of all the things you can do with your working copy, read Chapter 2, Basic Usage.

At this point, you have the option of making your repository available to others over anetwork. See Chapter 6, Server Configuration
to learn about the different sorts of server processes available and how to configure them.

376

Appendix B. Subversion for CVS Users

This appendix isaguide for CV'S users new to Subversion. It's essentially alist of differences between the two systems as “viewed
from 10,000 feet.” For each section, we provide references to relevant chapters when possible.

Although the goal of Subversion is to take over the current and future CV'S user base, some new features and design changes were
required to fix certain “broken” behaviors that CVS had. This means that, as a CV S user, you may need to break habits—ones that
you forgot were odd to begin with.

Revision Numbers Are Different Now

In CVS, revision numbers are per file. Thisis because CV S stores its datain RCSfiles; each file has a corresponding RCSfilein the
repository, and the repository is roughly laid out according to the structure of your project tree.

In Subversion, the repository looks like a single filesystem. Each commit results in an entirely new filesystem tree; in essence, the
repository isan array of trees. Each of these treesis |abeled with asingle revision number. When someone talks about “revision 547,
he's talking about a particular tree (and indirectly, the way the filesystem looked after the 54th commit).

Technically, it's not valid to talk about “revision 5 of f 00. ¢.” Instead, one would say “f 00. ¢ asit appearsin revision 5.” Also,
be careful when making assumptions about the evolution of afile. In CVS, revisions 5 and 6 of f 00. ¢ are aways different. In
Subversion, it'smost likely that f 00. ¢ did not change between revisions 5 and 6.

Similarly, in CVS, atag or branch is an annotation on the file or on the version information for that individua file, whereas in
Subversion, atag or branch is a copy of an entire tree (by convention, into the/ br anches or/ t ags directoriesthat appear at the
top level of the repository, beside/ t r unk). In therepository asawhole, many versions of each file may bevisible: thelatest version
on each branch, every tagged version, and of course the latest version on the trunk itself. So, to refine the terms even further, one
would often say “f 00. ¢ asit appearsin/ br anches/ REL1 inrevision5.”

For more details on this topic, see the section called “Revisions’.

Directory Versions

Subversion tracks tree structures, not just file contents. It's one of the biggest reasons Subversion was written to replace CVS.
Here's what this means to you, asaformer CV S user:

e The svn add and svn delete commands work on directories now, just as they work on files. So do svn copy and svn move.
However, these commands do not cause any kind of immediate change in the repository. Instead, the working items are smply
“scheduled” for addition or deletion. No repository changes happen until you runsvn comm t .

« Directories aren't dumb containers anymore; they have revision numbers like files. (Or more properly, it's correct to talk about
“directory f 0o/ inrevision5.”)

Let'stalk more about that last point. Directory versioning isahard problem; because we want to allow mixed-revision working copies,
there are some limitations on how far we can abuse this model.

From a theoretical point of view, we define “revision 5 of directory f 00" to mean a specific collection of directory entries and
properties. Now suppose we start adding and removing files from f 0o, and then commit. It would be alie to say that we still have
revision 5 of f 00. However, if we bumped f 00's revision number after the commit, that would be a lie too; there may be other
changesto f 0o we haven't yet received, because we haven't updated yet.

Subversion deals with this problem by quietly tracking committed adds and deletesin the . svn area. When you eventually runsvn
updat e, al accounts are settled with the repository, and the directory's new revision number is set correctly. Therefore, only after

377

Subversion for CVS Users

an update isit truly safe to say that you have a “ perfect” revision of a directory. Most of the time, your working copy will contain
“imperfect” directory revisions.

Similarly, aproblem arisesif you attempt to commit property changes on adirectory. Normally, the commit would bump the working
directory'slocal revision number. But again, that would be alie, as there may be adds or deletes that the directory doesn't yet have,
because no update has happened. Therefore, you are not allowed to commit property changes on a directory unless the directory
is up to date.

For more discussion about the limitations of directory versioning, see the section called “Mixed-revision working copies’.

More Disconnected Operations

In recent years, disk space has become outrageously cheap and abundant, but network bandwidth has not. Therefore, the Subversion
working copy has been optimized around the scarcer resource.

The. svn administrative directory servesthe same purpose asthe CVS directory, except that it also storesread-only, “ pristine” copies
of your files. This allows you to do many things offline:

svn status
Shows you any local changes you've made (see the section called “ See an overview of your changes’)
svn diff
Shows you the details of your changes (see the section called “ Examine the details of your local modifications”)
svn revert
Removes your local changes (see the section called “Fix Your Mistakes")
Also, the cached pristine files allow the Subversion client to send differences when committing, which CV S cannot do.

The last subcommand in the list—svn revert—is new. It will not only remove local changes, but also unschedul e operations such
as adds and deletes. Although deleting the file and then running svn updat e will still work, doing so distorts the true purpose
of updating. And, while we're on this subject...

Distinction Between Status and Update

Subversion attempts to erase alot of the confusion between the cvs status and cvs update commands.

The cvs status command has two purposes: first, to show the user any local modificationsin the working copy, and second, to show
the user which filesare out of date. Unfortunately, because of CV S's hard-to-read status output, many CV S usersdon't take advantage
of this command at all. Instead, they've developed a habit of running cvs updat e or cvs -n updat e to quickly see their
changes. If usersforget to usethe - n option, this hasthe side effect of merging repository changes they may not be ready to deal with.

Subversion removes this muddle by making the output of svn status easy to read for both humans and parsers. Also, svn update
prints only information about files that are updated, not local modifications.

Status

svn status prints al files that have local modifications. By default, the repository is not contacted. While this subcommand accepts
afair number of options, the following are the most commonly used ones:

-u

Contact the repository to determine, and then display, out-of-dateness information.

378

Subversion for CVS Users

Show all entries under version control.
-N

Run nonrecursively (do not descend into subdirectories).
The svn status command has two output formats. In the default “short” format, local modifications look like this:
$ svn status

M foo.c
M bar/ baz. c

If you specify the - - show updat es (- u) option, alonger output format is used:

$ svn status -u

M 1047 foo.c
* 1045 faces. htm
* bl 0o. png
M 1050 bar/baz. c
St at us agai nst revi sion: 1066

In this case, two new columns appear. The second column contains an asterisk if thefile or directory is out of date. The third column
shows the working copy's revision number of the item. In the previous example, the asterisk indicates that f aces. ht m would be
patched if we updated, and that bl 0o. png is a newly added file in the repository. (The absence of any revision number next to
bl 0o. png meansthat it doesn't yet exist in the working copy.)

For a more detailed discussion of svn status, including an explanation of the status codes shown in the previous example, see the
section called “ See an overview of your changes’.

Update

svn update updates your working copy, and prints only information about files that it updates.

Subversion has combined CVS's P and U codesinto just U. When amerge or conflict occurs, Subversion simply prints Gor C, rather
than a whole sentence about it.

For amore detailed discussion of svn update, see the section called “Update Y our Working Copy”.

Branches and Tags

Subversion doesn't distinguish between filesystem space and “branch” space; branches and tags are ordinary directories within the
filesystem. This is probably the single biggest mental hurdle that a CVS user will need to cross. Read all about it in Chapter 4,
Branching and Merging.

live in subdirectories of the main project directory. So remember to check out using the URL of the subdirectory that
contains the particular line of development you want, not the project's root URL. If you make the mistake of checking
out the root of the project, you may very well wind up with a working copy that contains a complete copy of your
project's content for each and every one of its branches and tags.

Q Since Subversion treats branches and tags as ordinary directories, your project's various lines of development probably

Thatis, providing you don't run out of disk space before your checkout finishes.

379

Subversion for CVS Users

Metadata Properties

A new feature of Subversion isthat you can attach arbitrary metadata (or “ properties’) to filesand directories. Properties are arbitrary
name/value pairs associated with files and directoriesin your working copy.

Toset or get aproperty name, usethe svn propset and svn propget subcommands. Tolist all propertieson an object, use svn proplist.

For more information, see the section called “Properties’.

Conflict Resolution

CV S marks conflicts with inline “ conflict markers,” and then prints a C during an update or merge operation. Historically, this has
caused problems, because CV Sisn't doing enough. Many users forget about (or don't see) the C after it whizzes by on their terminal.
They often forget that the conflict markers are even present, and then accidentally commit files containing those conflict markers.

Subversion solves this problem in a pair of ways. First, when a conflict occursin afile, Subversion records the fact that thefileisin
a state of conflict, and won't allow you to commit changes to that file until you explicitly resolve the conflict. Second, Subversion
provides interactive conflict resolution, which allows you to resolve conflicts as they happen instead of having to go back and do
so after the update or merge operation completes. See the section called “Resolve Any Conflicts’ for more about conflict resolution
in Subversion.

Binary Files and Translation

In the most general sense, Subversion handles binary files more gracefully than CV S does. Because CV S uses RCS, it can only store
successive full copies of achanging binary file. Subversion, however, expresses differences between files using abinary differencing
algorithm, regardless of whether they contain textual or binary data. That means all files are stored differentialy (compressed) in
the repository.

CVS users have to mark binary fileswith - kb flagsto prevent data from being garbled (due to keyword expansion and line-ending
tranglations). They sometimes forget to do this.

Subversion takes the more paranoid route. First, it never performsany kind of keyword or line-ending translation unlessyou explicitly
ask it to do so (see the section called “Keyword Substitution” and the section called “End-of-Line Character Sequences’ for more
details). By default, Subversion treats all file dataasliteral byte strings, and files are always stored in the repository in an untransl ated
state.

Second, Subversion maintains an internal notion of whether a file is “text” or “binary” data, but this notion is only extant in the
working copy. During an svn update, Subversion will perform contextual merges on locally modified text files, but will not attempt
to do so for binary files.

To determine whether a contextual merge is possible, Subversion examines the svn: m ne-t ype property. If the file has no
svn: m me- t ype property, or hasaMIME typethat istextual (e.g.,t ext / *), Subversion assumesit istext. Otherwise, Subversion
assumes the file is binary. Subversion also helps users by running a binary-detection agorithm in the svn import and svn add
commands. These commands will make a good guess and then (possibly) set abinary svn: m me- t ype property on the file being
added. (If Subversion guesses wrong, the user can always remove or hand-edit the property.)

Versioned Modules

Unlike CVS, a Subversion working copy isawarethat it has checked out amodule. That meansif somebody changes the definition of
amodule (e.g., adds or removes components), acall to svn update will update the working copy appropriately, adding and removing
components.

Subversion defines modules as alist of directories within adirectory property; see the section called “ Externals Definitions”.

380

Subversion for CVS Users

Authentication

With CVS's pserver, you are required to log in to the server (using the cvs login command) before performing any read or write
operation—you sometimes even have to log in for anonymous operations. With a Subversion repository using Apache httpd or
svnserve as the server, you don't provide any authentication credentials at the outset—if an operation that you perform requires
authentication, the server will challenge you for your credentials (whether those credentials are username and password, a client
certificate, or even both). So if your repository isworld-readable, you will not be required to authenticate at all for read operations.

Aswith CVS, Subversion still caches your credentials on disk (in your ~/ . subver si on/ aut h/ directory) unlessyou tell it not
to by using the - - no- aut h- cache option.

The exception to this behavior, however, isin the case of accessing an svnserve server over an SSH tunnel, usingthesvn+ssh: / /
URL scheme. In that case, the ssh program unconditionally demands authentication just to start the tunnel.

Converting a Repository from CVS to Subversion

Perhaps the most important way to familiarize CV'S users with Subversion is to let them continue to work on their projects using
the new system. And while that can be somewhat accomplished using aflat import into a Subversion repository of an exported CVS
repository, the more thorough solution involves transferring not just the latest snapshot of their data, but all the history behind it as
well, from one system to another. Thisis an extremely difficult problem to solve; it involves deducing changesets in the absence of
atomicity and trandating between the systems' completely orthogonal branching policies, among other complications. Still, a handful
of tools claim to at least partially support the ability to convert existing CV S repositories into Subversion ones.

The most popular (and mature) conversion tool is cvs2svn (http://cvs2svn.tigris.org/), a Python program originally created by
members of Subversion's own development community. Thistool ismeant to run exactly once: it scansyour CV Srepository multiple
times and attempts to deduce commits, branches, and tags as best it can. When it finishes, the result is either a Subversion repository
or a portable Subversion dump file representing your code's history. See the web site for detailed instructions and caveats.

381

http://cvs2svn.tigris.org/

Appendix C. WebDAYV and Autoversioning

WebDAYV isan extensionto HTTP, and it is growing more and more popular as a standard for file sharing. Today's operating systems
are becoming extremely web-aware, and many now have built-in support for mounting “shares’ exported by WebDAV servers.

If you use Apache as your Subversion network server, to some extent you are also running a WebDAYV server. This appendix gives
some background on the nature of this protocol, how Subversion uses it, and how well Subversion interoperates with other software
that is WebDAV -aware.

What Is WebDAV?

DAV stands for “Distributed Authoring and Versioning.” RFC 2518 defines a set of concepts and accompanying extension methods
to HTTP 1.1 that make the Web a more universal read/write medium. The basic ideais that a WebDAV -compliant web server can
act like a generic file server; clients can “mount” shared folders over HTTP that behave much like other network filesystems (such
asNFSor SMB).

The tragedy, though, is that despite the acronym, the RFC specification doesn't actually describe any sort of version control. Basic
WebDAYV clients and servers assume that only one version of each file or directory exists, and that it can be repeatedly overwritten.

Because RFC 2518 left out versioning concepts, another committee was left with the responsibility of writing RFC 3253 afew years
later. The new RFC adds versioning concepts to WebDAYV, placing the “V” back in “DAV”—hence the term “DeltaVv.” WebDAV/
DeltaV clients and servers are often called just “ DeltaV” programs, since DeltaV implies the existence of basic WebDAV.

Theoriginal WebDAV standard has been widely successful. Every modern computer operating system hasageneral WebDAYV client
built in (details to follow), and a number of popular standalone applications are also able to speak WebDAV—Microsoft Office,
Dreamweaver, and Photoshop, to name afew. On the server end, Apache HTTP Server has been able to provide WebDAYV services
since 1998 and is considered the de facto open source standard. Several other commercial WebDAV servers are available, including
Microsoft'sown I1S.

DeltaV, unfortunately, has not been so successful. It's very difficult to find any DeltaV clients or servers. The few that do exist are
relatively unknown commercial products, and thus it's very difficult to test interoperability. It's not entirely clear as to why DeltaV
has remained stagnant. Some opine that the specification is just too complex. Others argue that while WebDAV's features have
mass appeal (even the least technical users appreciate network file sharing), its version control features just aren't interesting or
necessary for most users. Finally, some believe that DeltaV remains unpopular because there's still no open source server product
that implementsit well.

When Subversion was still in its design phase, it seemed like a great idea to use Apache as a network server. It already had a
module to provide WebDAYV services. DeltaV was arelatively new specification. The hope was that the Subversion server module
(mod_dav_svn) would eventually evolve into an open source DeltaV reference implementation. Unfortunately, DeltaV has a very
specific versioning model that doesn't quite line up with Subversion's model. Some concepts were mappabl e; others were not.

Wheat does this mean, then?

First, the Subversion client isnot afully implemented DeltaV client. It needs certain types of things from the server that DeltaV itself
cannot provide, and thusis largely dependent on a number of Subversion-specific HTTP REPORT requests that only mod_dav_svn
understands.

Second, mod_dav_svnisnot afully realized DeltaV server. Many portions of the DeltaV specification wereirrelevant to Subversion,
and thus were left unimplemented.

A long-held debate in the Subversion developer community about whether it was worthfile to remedy either of these situations
eventually reached closure, with the Subversion devel opersofficially deciding to abandon plansto fully support DeltaV. New versions
of Subversion will, of course, continue to provide the same DeltaV feature support already present in older releases, but no new work

382

WebDAYV and Autoversioning

would be done to increase coverage of the specification—in fact, Subversion would intentionally begin to move away from strict
DeltaV asits primary HTTP-based protocol.

Autoversioning

While the Subversion client is not afull DeltaV client, and the Subversion server is not afull DeltaV server, there's till a glimmer
of WebDAYV interoperability to be happy about: autoversioning.

Autoversioning is an optional feature defined in the DeltaV standard. A typical DeltaV server will regject an ignorant WebDAYV client
attempting to do a PUT to afilethat's under version control. To change a version-controlled file, the server expects a series of proper
versioning requests. something like MKACTI VI TY, CHECKOUT, PUT, CHECKI N. But if the DeltaV server supports autoversioning,
write reguests from basic WebDAYV clients are accepted. The server behaves as though the client had issued the proper series of
versioning requests, performing a commit under the hood. In other words, it allows a DeltaV server to interoperate with ordinary
WebDAYV clients that don't understand versioning.

Because so many operating systems already haveintegrated WebDAYV clients, the use casefor thisfeature can beincredibly appealing
to administrators working with non-technical users. Imagine an office of ordinary users running Microsoft Windows or Mac OS.
Each user “mounts’ the Subversion repository, which appears to be an ordinary network folder. They use the shared folder as they
always do: open files, edit them, and save them. Meanwhile, the server isautomatically versioning everything. Any administrator (or
knowledgeable user) can still use a Subversion client to search history and retrieve older versions of data.

This scenario isn't fiction—it's real and it works. To activate autoversioning in mod_dav_svn, use the SVNAut over si oni ng
directive withinthe ht t pd. conf Locat i on block, like so:

<Location /repos>
DAV svn
SVNPat h /var/svn/repository
SVNAut over si oni ng on

</ Locati on>

When Subversion autoversioning is active, write requests from WebDAYV clients result in automatic commits. A generic log message
isautomatically generated and attached to each revision.

Before activating thisfeature, however, understand what you're getting into. WebDAYV clientstend to do many write requests, resulting
in a huge number of automatically committed revisions. For example, when saving data, many clientswill do a PUT of a O-byte file
(asaway of reserving aname) followed by another PUT with the real file data. The single file-write results in two separate commits.
Also consider that many applications auto-save every few minutes, resulting in even more commits.

If you have a post-commit hook program that sends email, you may want to disable email generation either altogether or on certain
sections of the repository; it depends on whether you think the influx of emails will till prove to be valuable notifications or not.
Also, a smart post-commit hook program can distinguish between a transaction created via autoversioning and one created through
anormal Subversion commit operation. The trick isto look for arevision property named svn: aut over si oned. If present, the
commit was made by a generic WebDAV client.

Another feature that may be a useful complement for Subversion's autoversioning comes from Apache's nod_mi nme module. If a
WebDAYV client adds a new file to the repository, there's no opportunity for the user to set thethesvn: m ne-t ype property. This
might cause the file to appear as a generic icon when viewed within a WebDAV shared folder, not having an association with any
application. One remedy isto have a sysadmin (or other Subversion-knowledgeabl e person) check out aworking copy and manually
setthesvn: ni nme-t ype property on necessary files. But there's potentially no end to such cleanup tasks. Instead, you can use the
ModM neUsePat hl nf o directivein your Subversion <Locat i on> block:

<Location /repos>

383

WebDAYV and Autoversioning

DAV svn
SVNPat h /var/svn/repository
SVNAuUt over si oni ng on

ModM neUsePat hl nfo on

</ Locati on>

This directive alows nod_mi e to attempt automatic deduction of the MIME type on new files that enter the repository via
autoversioning. The module looks at the file's named extension and possibly the contents as well; if the file matches some common
patterns, thefileéssvn: m ne-t ype property will be set automatically.

Client Interoperability

All WebDAV clients fall into one of three categories—standalone applications, file-explorer extensions, or filesystem
implementations. These categories broadly define the types of WebDAV functionality available to users. Table C.1, “Common
WebDAV clients’ gives our categorization as well as a quick description of some common pieces of WebDAV -enabled software.
Y ou can find more details about these software offerings, aswell as their general category, in the sections that follow.

Table C.1. Common WebDAYV clients

Software Type Windows Mac Linux Description
Adobe Photoshop | Standalone X Image editing
WebDAV software, alowing
application direct opening from,
and writing to,
WebDAV URLs
cadaver Standalone X X Command-line
WebDAV WebDAV client
application supporting file

transfer, tree, and
locking operations

DAV Explorer Standalone X X X Java GUI tool for
WebDAV exploring WebDAV
application shares

Adobe Standalone X Web production

Dreamweaver WebDAV software able to
application directly read from

and write to
WebDAV URLs

Microsoft Office Standalone X Office productivity
WebDAV suite with severa
application components able

to directly read
from and write to
WebDAV URLSs

Microsoft Web | File-explorer X GUI file explorer
Folders WebDAV extension program able to
perform tree
operations on a
WebDAV share

384

WebDAYV and Autoversioning

Software Type Windows Mac Linux Description
GNOME Nautilus |File-explorer X GUI file explorer
WebDAV extension able to perform
tree operations on a
WebDAYV share
KDE Konqueror File-explorer X GUI file explorer
WebDAV extension able to perform
tree operations on a
WebDAV share
Mac OS X WebDAYV filesystem X Operating system
implementation that has built-

in support for
mounting WebDAV

shares.
Novell NetDrive WebDAYV filesystem | X Drive-mapping
implementation program for

assigning Windows
drive letters to
a mounted remote

WebDAV share
SRT WebDrive WebDAYV filesystem| X File transfer
implementation software, which,
among other things,
allows the
assignment of
Windows drive

|etters to a mounted
remote WebDAV

share
davfs2 WebDAYV filesystem X Linux filesystem
implementation driver that allows
you to mount a
WebDAV share

Standalone WebDAYV Applications

A WebDAYV application is aprogram that speaks WebDAYV protocolswith aWebDAV server. We'll cover some of the most popular
programs with this kind of WebDAV support.

Microsoft Office, Dreamweaver, Photoshop

OnWindows, several well-known applications contain integrated WebDAYV client functionality, such as Microsoft's Office,! Adobe's
Photoshop and Dreamweaver programs. They're able to directly open and save to URLSs, and tend to make heavy use of WebDAV
locks when editing afile.

Note that while many of these programs also exist for Mac OS X, they do not appear to support WebDAYV directly on that platform.
Infact, on Mac OS X, the File#Open dialog box doesn't allow one to type a path or URL at all. It'slikely that the WebDAYV features
were deliberately |eft out of Macintosh versions of these programs, since OS X already provides such excellent low-level filesystem
support for WebDAV.

IwebDAV support was removed from Microsoft Access for some reason, but it existsin the rest of the Office suite.

385

WebDAYV and Autoversioning

cadaver, DAV Explorer

cadaver isabare-bones Unix command-line program for browsing and changing WebDAYV shares. Likethe Subversion client, it uses
the neon HTTP library—not surprisingly, since both neon and cadaver are written by the same author. cadaver is free software (GPL
license) and is available at http://www.webdav.org/cadaver/.

Using cadaver is similar to using acommand-line FTP program, and thusit's extremely useful for basic WebDAV debugging. It can
be used to upload or download filesin a pinch, to examine properties, and to copy, move, lock, or unlock files:

$ cadaver http://host/repos
dav:/repos/> Is
Listing collection “/repos/': succeeded.

Coll: > foobar 0 My 10 16:19
> playwight. el 2864 My 4 16:18
> proof bypoem t xt 1461 May 5 15:09
> west coast . pg 66737 May 5 15:09
dav:/repos/> put README
Upl oadi ng README to "/ repos/ READVE' :
Progress: [=============================>] 100. 0% of 357 bytes succeeded.
dav:/repos/ > get proofbypoem txt
Downl oadi ng "/ repos/ proof bypoem txt' to proof bypoemtxt:
Progress: [=============================>] 100. 0% of 1461 bytes succeeded.

DAV Explorer is another standalone WebDAV client, written in Java. It's under afree Apache-like license and is available at http://
www.ics.uci.edu/~webdav/. It does everything cadaver does, but has the advantages of being portable and being a more user-friendly
GUI application. It's also one of the first clientsto support the new WebDAV Access Control Protocol (RFC 3744).

Of course, DAV Explorer's ACL support is useless in this case, since mod_dav_svn doesn't support it. The fact that both cadaver
and DAV Explorer support some limited DeltaV commands isn't particularly useful either, since they don't allow MKACTI VI TY
requests. But it's not relevant anyway; we're assuming al of these clients are operating against an autoversioning repository.

File-Explorer WebDAYV Extensions

Some popular file explorer GUI programs support WebDAV extensions that allow a user to browse a DAV share as though it was
just another directory on the local computer, and to perform basic tree editing operations on the items in that share. For example,
Windows Explorer is able to browse a WebDAYV server as a “network place.” Users can drag files to and from the desktop, or can
rename, copy, or delete files in the usual way. But because it's only a feature of the file explorer, the DAV share isn't visible to
ordinary applications. All DAV interaction must happen through the explorer interface.

Microsoft Web Folders

Microsoft was one of the original backers of the WebDAV specification, and first started shipping a client in Windows 98, which
was known as Web Folders. This client was also shipped in Windows NT 4.0 and Windows 2000.

The original Web Folders client was an extension to Explorer, the main GUI program used to browse filesystems. It works well
enough. In Windows 98, the feature might need to be explicitly installed if Web Folders aren't already visible inside My Computer.
In Windows 2000, simply add a new “network place,” enter the URL, and the WebDAYV share will pop up for browsing.

With the release of Windows XP, Microsoft started shipping a new implementation of Web Folders, known as the WebDAV
Mini-Redirector. The new implementation is a filesystem-level client, allowing WebDAV shares to be mounted as drive letters.
Unfortunately, this implementation is incredibly buggy. The client usually triesto convert HTTP URLs (ht t p: / / host / r epos)

386

http://www.webdav.org/cadaver/
http://www.ics.uci.edu/~webdav/
http://www.ics.uci.edu/~webdav/

WebDAYV and Autoversioning

into UNC sharenotation (\ \ host \ r epos); it also often triesto use Windows Domain authentication to respond to basic-auth HTTP
challenges, sending usernames as HOST\ user namne. These interoperability problems are severe and are documented in numerous
places around the Web, to the frustration of many users. Even Greg Stein, the original author of Apache's WebDAV module, bluntly
states that XP Web Folders simply can't operate against an Apache server.

Windows Vistas initial implementation of Web Folders seems to be almost the same as XP's, so it has the same sort of problems.
With luck, Microsoft will remedy these issuesin a Vista Service Pack.

However, there seem to be workarounds for both XP and Vista that allow Web Folders to work against Apache. Users have mostly
reported success with these techniques, so wel'll relay them here.

OnWindows XP, you have two options. First, search Microsoft'sweb site for update KB907306, “ Software Update for Web Folders.”
This may fix all your problems. If it doesn't, it seems that the original pre-XP Web Folders implementation is still buried within
the system. Y ou can unearth it by going to Network Places and adding a new network place. When prompted, enter the URL of the
repository, but include a port number in the URL. For example, you should enter ht t p: / / host/ repos asht t p: // host : 80/

r epos instead. Respond to any authentication prompts with your Subversion credentials.

On Windows Vista, the same KB907306 update may clear everything up. But there may still be other issues. Some users have
reported that Vistaconsidersall ht t p: // connectionsinsecure, and thuswill alwaysfail any authentication challengesfrom Apache
unless the connection happensover ht t ps: / / . If you're unable to connect to the Subversion repository via SSL, you can tweak the
system registry to turn off thisbehavior. Just changethevalue of theHKEY L OCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set
\ Servi ces\ Wbd i ent\ Par anet er s\ Basi cAut hLevel key from 1 to 2. A fina warning: be sure to set up the Web
Folder to point to the repository's root directory (/), rather than some subdirectory such as/ t r unk. Vista Web Folders seems to
work only against repository roots.

In general, while these workarounds may function for you, you might get a better overall experience using a third-party WebDAV
client such as WebDrive or NetDrive.

Nautilus, Konqueror

Nautilus is the officia file manager/browser for the GNOME desktop (http://www.gnome.org), and Konqueror is the manager/
browser for the KDE desktop (http://www.kde.org). Both of these applications have an explorer-level WebDAYV client built in, and
they operate just fine against an autoversioning repository.

In GNOME's Nautilus, select the File#Open location menu item and enter the URL in the dial og box presented. The repository should
then be displayed like any other filesystem.

In KDE's Kongueror, you need to usethewebdav: / / scheme when entering the URL inthelocation bar. If youenteranht t p: / /
URL, Kongueror will behave like an ordinary web browser. You'll likely see the generic HTML directory listing produced by
mod_dav_svn. When you enter webdav: / / host / r epos instead of ht t p: / / host / r epos, Konqueror becomes a WebDAV
client and displays the repository as afilesystem.

WebDAYV Filesystem Implementation

The WebDAYV filesystem implementation is arguably the best sort of WebDAYV client. It's implemented as a low-level filesystem
module, typically within the operating system'skernel. This means that the DAV share is mounted like any other network filesystem,
similar to mounting an NFS share on Unix or attaching an SMB share as a drive letter in Windows. As aresult, this sort of client
provides completely transparent read/write WebDAV accessto all programs. Applications aren't even aware that WebDAV requests
are happening.

WebDrive, NetDrive

Both WebDrive and NetDrive are excellent commercial products that allow a WebDAV share to be attached as drive letters in
Windows. Asaresult, you can operate on the contents of these WebDAV -backed pseudodrives as easily asyou can against real local

387

http://www.gnome.org
http://www.kde.org

WebDAYV and Autoversioning

hard drives, and in the same ways. Y ou can purchase WebDrive from South River Technologies (http://www.southrivertech.com).
Novell's NetDriveisfreely available online, but requires users to have a NetWare license.

Mac OS X

ApplesOS X operating system has an integrated filesystem-level WebDAYV client. From the Finder, select the Go#Connect to Server
menu item. Enter aWebDAV URL, and it appears as adisk on the desktop, just like any other mounted volume. Y ou can a so mount
aWebDAV share from the Darwin terminal by using the webdav filesystem type with the mount command:

$ mount -t webdav http://svn. exanpl e. conl repos/ project /some/nount point
$

Notethat if your mod_dav_svn isolder than version 1.2, OS X will refuseto mount the share asread/write; it will appear asread-only.
Thisisbecause OS X insists on locking support for read/write shares, and the ability to lock files first appeared in Subversion 1.2.

Also, OS X's WebDAYV client can sometimes be overly sensitiveto HTTP redirects. If OS X is unable to mount the repository at all,
you may need to enable the Br owser Mat ch directive in the Apache server'sht t pd. conf :

Browser Mat ch "~WebDAVFS/ 1. [012]" redirect-carefully

Linux davfs2

Linux davfs2 is afilesystem module for the Linux kernel, whose development is organized at http://dav.sourceforge.net/. Once you
install davfs2, you can mount aWebDAV network share using the usual Linux mount command:

$ mount. davfs http://host/repos / mt/dav

388

http://www.southrivertech.com
http://dav.sourceforge.net/

Appendix D. Copyright

Copyright (c) 2002-2011 Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato.

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://
creativecommons.org/licenses/by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
USA.

A summary of the license is given below, followed by the full legal text.

You are free:

* to copy, distribute, display, and performthe work
* to nake derivative works
* to nmake commerci al use of the work

Under the follow ng conditions:
Attribution. You nmust give the original author credit.

* For any reuse or distribution, you nust nmake clear to others the
license terns of this work.

* Any of these conditions can be waived if you get perm ssion from
t he aut hor.

Your fair use and other rights are in no way affected by the above.

The above is a summary of the full |icense bel ow

Creative Commons Legal Code
Attribution 2.0

CREATI VE COVMONS CORPCRATION | S NOT A LAW FI RM AND DOES NOT PROVI DE
LEGAL SERVI CES. DI STRI BUTI ON OF THI S LI CENSE DCES NOT' CREATE AN
ATTORNEY- CLI ENT RELATI ONSHI P. CREATI VE COVWONS PROVI DES THI S

| NFORVATI ON ON AN "AS-1S" BASIS. CREATI VE COVWONS MAKES NO WARRANTI ES
REGARDI NG THE | NFORVMATI ON PROVI DED, AND DI SCLAI M5 LI ABI LI TY FOR
DAMVAGES RESULTI NG FROM I TS USE.

Li cense

THE WORK (AS DEFI NED BELOW | S PROVI DED UNDER THE TERMS OF THI S
CREATI VE COVWWONS PUBLI C LI CENSE ("CCPL" OR "LICENSE"). THE WORK | S
PROTECTED BY COPYRI GHT AND/ CR OTHER APPLI CABLE LAW ANY USE OF THE
WORK OTHER THAN AS AUTHORI ZED UNDER THI' S LI CENSE OR COPYRI GAT LAW I S
PROHI BI TED.

BY EXERCI SI NG ANY RI GHTS TO THE WORK PROVI DED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THI'S LI CENSE. THE LI CENSOR GRANTS

389

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Copyright

YOU THE RI GHTS CONTAI NED HERE | N CONSI DERATI ON OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDI Tl ONS

1. Definitions

a. "Collective Wrk" nmeans a work, such as a periodical issue,
ant hol ogy or encycl opedia, in which the Wirk inits entirety in
unnodified form along with a nunber of other contributions,
constituting separate and i ndependent works in thensel ves, are
assenbled into a collective whole. A work that constitutes a
Collective Work will not be considered a Derivative Wrk (as
defined below) for the purposes of this License.

b. "Derivative Wrk" nmeans a work based upon the Wirk or upon the
Work and ot her pre-existing works, such as a translation,
musi cal arrangenent, dramatization, fictionalization, notion
pi cture version, sound recording, art reproduction, abridgment,
condensation, or any other formin which the Wrk may be recast,
transfornmed, or adapted, except that a work that constitutes a
Col l ective Work will not be considered a Derivative Wrk for the
purpose of this License. For the avoidance of doubt, where the
Work is a nusical conposition or sound recording, the
synchroni zation of the Work in tined-relation with a nmoving
i mage ("synching”) will be considered a Derivative Wrk for the
pur pose of this License.

c. "Licensor" neans the individual or entity that offers the Wrk
under the terns of this License.

d. "Original Author" means the individual or entity who created the Work

e. "Wrk" neans the copyrightabl e work of authorship offered under
the terms of this License

f. "You" nmeans an individual or entity exercising rights under this
Li cense who has not previously violated the terns of this
Li cense with respect to the Wrk, or who has received express
perm ssion fromthe Licensor to exercise rights under this
Li cense despite a previous violation

2. Fair Use Rights. Nothing in this license is intended to reduce,
l[imt, or restrict any rights arising fromfair use, first sale or
other limtations on the exclusive rights of the copyright owner
under copyright |aw or other applicable |aws.

3. License Grant. Subject to the ternms and conditions of this License
Li censor hereby grants You a worl dwi de, royalty-free,
non- excl usi ve, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Wrk as stated
bel ow

a. to reproduce the Wrk, to incorporate the Wrk into one or nore
Col l ective Wrks, and to reproduce the Wrk as incorporated in
the Col |l ective Wrks;

390

Copyright

b. to create and reproduce Derivative WrKks;

c. to distribute copies or phonorecords of, display publicly,
perform publicly, and performpublicly by nmeans of a digita
audi o transm ssion the Wrk including as incorporated in
Col I ective Works;

d. to distribute copies or phonorecords of, display publicly,
perform publicly, and performpublicly by nmeans of a digita
audi o transmi ssion Derivative WrKks.

For the avoi dance of doubt, where the work is a musical conposition

i. Performance Royalties Under Bl anket Licenses. Licensor
wai ves the exclusive right to collect, whether
individually or via a performance rights society
(e.g. ASCAP, BM, SESAC), royalties for the public
performance or public digital performance (e.g. webcast)
of the Wrk.

ii. Mechanical Rights and Statutory Royalties. Licensor waives
the exclusive right to collect, whether individually or
via a nusic rights agency or designated agent (e.g. Harry
Fox Agency), royalties for any phonorecord You create from
the Work ("cover version") and distribute, subject to the
conmpul sory license created by 17 USC Section 115 of the US
Copyright Act (or the equivalent in other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoi dance of
doubt, where the Wbrk is a sound recordi ng, Licensor waives the
exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for
the public digital performance (e.g. webcast) of the Wbrk
subject to the conpulsory license created by 17 USC Section 114
of the US Copyright Act (or the equivalent in other
jurisdictions).

The above rights may be exercised in all media and formats whet her now
known or hereafter devised. The above rights include the right to nmake
such nodifications as are technically necessary to exercise the rights
in other media and formats. Al rights not expressly granted by

Li censor are hereby reserved.

4. Restrictions.The license granted in Section 3 above is expressly
made subject to and limted by the followi ng restrictions:

a. You may distribute, publicly display, publicly perform or
publicly digitally performthe Wrk only under the terns of this
Li cense, and You nust include a copy of, or the Uniform Resource
Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform or

391

Copyright

publicly digitally perform You may not offer or inpose any
terms on the Wrk that alter or restrict the ternms of this

Li cense or the recipients' exercise of the rights granted
hereunder. You may not sublicense the Wirk. You nmust keep intact
all notices that refer to this License and to the disclainmer of
warranties. You may not distribute, publicly display, publicly
perform or publicly digitally performthe Wrk with any
technol ogi cal neasures that control access or use of the Wrk in
a manner inconsistent with the terns of this License

Agreenent. The above applies to the Wirk as incorporated in a
Col l ective Wrk, but this does not require the Collective Wrk
apart fromthe Wrk itself to be nmade subject to the terns of
this License. If You create a Collective Wrk, upon notice from
any Licensor You nust, to the extent practicable, renove from
the Collective Wrk any reference to such Licensor or the
Oiginal Author, as requested. If You create a Derivative Wrk
upon notice fromany Licensor You nmust, to the extent
practicable, renove fromthe Derivative Wrk any reference to
such Licensor or the Oiginal Author, as requested.

If you distribute, publicly display, publicly perform or
publicly digitally performthe Wrk or any Derivative Wrks or
Col l ective Wrks, You nust keep intact all copyright notices for
the Work and give the Original Author credit reasonable to the
medi um or neans You are utilizing by conveying the name (or
pseudonym if applicable) of the Original Author if supplied; the
title of the Work if supplied; to the extent reasonably
practicable, the Uniform Resource ldentifier, if any, that

Li censor specifies to be associated with the Wrk, unless such
URI does not refer to the copyright notice or |icensing
information for the Wirk; and in the case of a Derivative Wrk

a credit identifying the use of the Work in the Derivative Wrk
(e.g., "French translation of the Work by Oiginal Author,"” or
"Screenpl ay based on original Work by Original Author"”). Such
credit may be inplenented in any reasonabl e manner; provided,
however, that in the case of a Derivative Wrk or Collective
Work, at a mnimum such credit will appear where any ot her
conpar abl e authorship credit appears and in a nanner at |east as
prom nent as such other conparable authorship credit.

5. Representations, Warranties and Di scl ai nmer

UNLESS OTHERW SE MUTUALLY AGREED TO BY THE PARTIES IN WRI Tl NG

LI CENSOR OFFERS THE WORK AS-1S AND MAKES NO REPRESENTATI ONS OR
WARRANTI ES OF ANY KI ND CONCERNI NG THE WORK, EXPRESS, | MPLI ED,
STATUTORY OR OTHERW SE, | NCLUDI NG, W THOUT LI M TATI ON, WARRANTI ES OF
TI TLE, MERCHANTI BI LI TY, FITNESS FOR A PARTI CULAR PURPCSE,

NONI NFRI NGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE COF ABSENCE OF ERRORS, WHETHER OR NOT

DI SCOVERABLE. SQOVE JURI SDI CTI ONS DO NOT ALLOW THE EXCLUSI ON OF | MPLI ED
WARRANTI ES, SO SUCH EXCLUSI ON MAY NOT APPLY TO YQU.

6. Limtation on Liability. EXCEPT TO THE EXTENT REQUI RED BY
APPL| CABLE LAW I N NO EVENT WLL LICENSOR BE LI ABLE TO YOU ON ANY

392

Copyright

LEGAL THEORY FOR ANY SPEC!I AL, | NClI DENTAL, CONSEQUENTI AL, PUNI TI VE

OR EXEMPLARY DAMAGES ARI SING QUT OF THI S LI CENSE OR THE USE OF THE
WORK, EVEN | F LI CENSCR HAS BEEN ADVI SED OF THE POSSI BI LI TY OF SUCH
DANVAGES.

Term nati on

a.

This License and the rights granted hereunder will term nate
automatically upon any breach by You of the ternms of this

Li cense. Individuals or entities who have received Derivative
Works or Col |l ective Wrks from You under this License, however,
wi Il not have their licenses term nated provided such
individuals or entities remain in full conpliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any

term nation of this License.

Subject to the above ternms and conditions, the |license granted
here is perpetual (for the duration of the applicable copyright
in the Wrk). Notwi thstanding the above, Licensor reserves the
right to release the Work under different |license ternms or to
stop distributing the Woirk at any tinme; provided, however that
any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted
under the ternms of this License), and this License will continue
in full force and effect unless term nated as stated above.

M scel | aneous

a.

Each time You distribute or publicly digitally performthe Wrk
or a Collective Wrk, the Licensor offers to the recipient a
license to the Wirk on the sanme terns and conditions as the
license granted to You under this License.

Each time You distribute or publicly digitally performa
Derivative Wrk, Licensor offers to the recipient a license to
the original Wrk on the sane terns and conditions as the
license granted to You under this License.

If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or
enforceability of the remainder of the ternms of this License,
and wi thout further action by the parties to this agreenent,
such provision shall be refornmed to the m ni mum extent necessary
to make such provision valid and enforceabl e.

No term or provision of this License shall be deenmed wai ved and
no breach consented to unless such waiver or consent shall be in
witing and signed by the party to be charged with such wai ver
or consent.

This License constitutes the entire agreenent between the
parties with respect to the Wirk |licensed here. There are no
under st andi ngs, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any

393

Copyright

addi ti onal provisions that may appear in any communication from
You. This License may not be nodified without the nutual witten
agreement of the Licensor and You.

Creative Commons is not a party to this License, and makes no warranty
what soever in connection with the Work. Creative Commons will not be
liable to You or any party on any |legal theory for any danages

what soever, including without linmtation any general, special,

i nci dental or consequential damages arising in connection to this
license. Notwi thstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shal |l have all rights and obligations of Licensor.

Except for the limted purpose of indicating to the public that the
Wrk is |icensed under the CCPL, neither party will use the trademark
"Creative Conmons" or any related trademark or | ogo of Creative
Commons w thout the prior witten consent of Creative Comons. Any
permtted use will be in conpliance with Creative Conmons'

t hen-current trademark usage guidelines, as may be published on its
website or otherw se nade avail able upon request fromtinme to tinmne.

Creative Cormons nmay be contacted at http://creativeconmons. org/.

394

Index

B

BASE, 45
branches, 17, 93

C

checkout (see working copy, creation)
CollabNet, xiv
COMMITTED, 46
committing (see working copy, commit)
Concurrent Versions System, xiii
conflicts, 6
conflict markers, 29
resolution, 31
interactive, 28
manual, 30
postponing, 29
resolving, 26
reviewing, 28
CV'S (see Concurrent Versions System)

D
delta, 22

H
HEAD, 45

L
log message, 21

M

mod_dav_svn, xvi

P

patches, 24

PREV, 46

project root, 17, 131
properties, 51

R
repository
defined, 1
hooks
post-commit, 367
post-lock, 371
post-revprop-change, 369
post-unlock, 373
pre-commit, 366
pre-lock, 370

pre-revprop-change, 368
pre-unlock, 372
start-commit, 365
revisions

as dates, 46

defined, 7

global, 8

keywords, 45
BASE, 45
COMMITTED, 46
HEAD, 45
PREV, 46

S

SCM (see software configuration management)

software configuration management, xiii
Subversion
architecture, xiv
components, xvi
defined, xiii
history of, xiv, xvi
svn, Xvi
options, 16
subcommands
add, 21, 239
blame, 241
cat, 243
changelist, 244
checkout, 11, 18, 245
cleanup, 249
commit, 12, 250
copy, 21, 252
delete, 21, 255
diff, 23, 257
export, 261
help, 15, 263
import, 16, 264
info, 265
list, 268
lock, 270
log, 271
merge, 275
mergeinfo, 277
mkdir, 21, 278
move, 21, 279
propdel, 281
propedit, 282
propget, 283
proplist, 285
propset, 287
resolve, 289
resolved, 291
revert, 25, 292

395

Index

status, 22, 294 copy-revprops, 347
switch, 299 help, 348
unlock, 301 info, 349
update, 12, 20, 302 initialize, 350
syntax synchronize, 351
URLs, 8 syntax
svnadmin, Xvi URLs, 8
subcommands svnversion, xvi, 358
crashtest, 306
create, 307 T
deltify, 308 tags, 17, 120
dump, 309 text-base, 22
help, 311 trunk, 17
hotcopy, 312
list-dblogs, 313 U
::;“g‘ifd'db' 0gs, 314 unified diff, 23
IS0 c’k s 316 updating (see working copy, update)
Istxns, 317
pack, 318 \
recover, 319 V CS (see version control systems)
rmlocks, 320 version control
rmtxns, 321 models
setlog, 322 copy-modify-merge, 4
setrevprop, 323 lock-modify-unlock, 3
setuuid, 324 version control systems, xiii, 1
upgrade, 325
verify, 326 W
svndumpfilter, xvi working copy
subcommands commit, 12
exclude, 355 creation, 11
help, 357 defined, 2, 9
include, 356 mixed-revision, 12
svnlook, xvi update, 12
subcommands
author, 329
cat, 330
changed, 331
date, 333
diff, 334
dirs-changed, 335
help, 336
history, 337
info, 338
lock, 339
log, 340
propget, 341
proplist, 342
tree, 343
uuid, 344
youngest, 345
SVNSErve, Xvi
svnsync, xvi
subcommands

396

	Version Control with Subversion
	Table of Contents
	Foreword
	Preface
	What Is Subversion?
	Is Subversion the Right Tool?
	Subversion's History
	Subversion's Architecture
	Subversion's Components
	What's New in Subversion

	Audience
	How to Read This Book
	Organization of This Book
	This Book Is Free
	Acknowledgments

	Chapter 1. Fundamental Concepts
	Version Control Basics
	The Repository
	The Working Copy
	Versioning Models
	The problem of file sharing
	The lock-modify-unlock solution
	The copy-modify-merge solution

	Version Control the Subversion Way
	Subversion Repositories
	Revisions
	Addressing the Repository
	Subversion Working Copies
	How the working copy works
	Fundamental working copy interactions
	Mixed-revision working copies
	Updates and commits are separate
	Mixed revisions are normal
	Mixed revisions are useful
	Mixed revisions have limitations

	Summary

	Chapter 2. Basic Usage
	Help!
	Getting Data into Your Repository
	Importing Files and Directories
	Recommended Repository Layout
	What's In a Name?

	Creating a Working Copy
	Basic Work Cycle
	Update Your Working Copy
	Make Your Changes
	Review Your Changes
	See an overview of your changes
	Examine the details of your local modifications

	Fix Your Mistakes
	Resolve Any Conflicts
	Viewing conflict differences interactively
	Resolving conflict differences interactively
	Postponing conflict resolution
	Merging conflicts by hand
	Discarding your changes in favor of a newly fetched revision
	Punting: using svn revert

	Commit Your Changes

	Examining History
	Examining the Details of Historical Changes
	Examining local changes
	Comparing working copy to repository
	Comparing repository revisions

	Generating a List of Historical Changes
	Browsing the Repository
	svn cat
	svn list

	Fetching Older Repository Snapshots

	Sometimes You Just Need to Clean Up
	Disposing of a Working Copy
	Recovering from an Interruption

	Dealing with Structural Conflicts
	An Example Tree Conflict

	Summary

	Chapter 3. Advanced Topics
	Revision Specifiers
	Revision Keywords
	Revision Dates

	Peg and Operative Revisions
	Properties
	Why Properties?
	Manipulating Properties
	Properties and the Subversion Workflow
	Automatic Property Setting

	File Portability
	File Content Type
	File Executability
	End-of-Line Character Sequences

	Ignoring Unversioned Items
	Keyword Substitution
	Sparse Directories
	Locking
	Creating Locks
	Discovering Locks
	Breaking and Stealing Locks
	Lock Communication

	Externals Definitions
	Changelists
	Creating and Modifying Changelists
	Changelists As Operation Filters
	Changelist Limitations

	Network Model
	Requests and Responses
	Client Credentials
	Caching credentials
	Disabling password caching
	Removing cached credentials
	Command-line authentication
	Authentication wrap-up

	Summary

	Chapter 4. Branching and Merging
	What's a Branch?
	Using Branches
	Creating a Branch
	Working with Your Branch
	The Key Concepts Behind Branching

	Basic Merging
	Changesets
	Keeping a Branch in Sync
	Reintegrating a Branch
	Mergeinfo and Previews
	Undoing Changes
	Resurrecting Deleted Items

	Advanced Merging
	Cherrypicking
	Merge Syntax: Full Disclosure
	Merges Without Mergeinfo
	More on Merge Conflicts
	Blocking Changes
	Keeping a Reintegrated Branch Alive
	Merge-Sensitive Logs and Annotations
	Noticing or Ignoring Ancestry
	Merges and Moves
	Preventing Naïve Clients from Committing Merges
	The Final Word on Merge Tracking

	Traversing Branches
	Tags
	Creating a Simple Tag
	Creating a Complex Tag

	Branch Maintenance
	Repository Layout
	Data Lifetimes

	Common Branching Patterns
	Release Branches
	Feature Branches

	Vendor Branches
	General Vendor Branch Management Procedure
	svn_load_dirs.pl

	Summary

	Chapter 5. Repository Administration
	The Subversion Repository, Defined
	Strategies for Repository Deployment
	Planning Your Repository Organization
	Deciding Where and How to Host Your Repository
	Choosing a Data Store
	Berkeley DB
	FSFS

	Creating and Configuring Your Repository
	Creating the Repository
	Implementing Repository Hooks
	Berkeley DB Configuration
	FSFS Configuration

	Repository Maintenance
	An Administrator's Toolkit
	svnadmin
	svnlook
	svndumpfilter
	svnsync
	fsfs-reshard.py
	Berkeley DB utilities

	Commit Log Message Correction
	Managing Disk Space
	How Subversion saves disk space
	Removing dead transactions
	Purging unused Berkeley DB logfiles
	Packing FSFS filesystems

	Berkeley DB Recovery
	Migrating Repository Data Elsewhere
	Filtering Repository History
	Repository Replication
	Repository Backup
	Managing Repository UUIDs

	Moving and Removing Repositories
	Summary

	Chapter 6. Server Configuration
	Overview
	Choosing a Server Configuration
	The svnserve Server
	svnserve over SSH
	The Apache HTTP Server
	Recommendations

	svnserve, a Custom Server
	Invoking the Server
	svnserve as daemon
	svnserve via inetd
	svnserve over a tunnel
	svnserve as a Windows service
	svnserve as a launchd job

	Built-in Authentication and Authorization
	Create a users file and realm
	Set access controls

	Using svnserve with SASL
	Authenticating with SASL
	SASL encryption

	Tunneling over SSH
	SSH Configuration Tricks
	Initial setup
	Controlling the invoked command

	httpd, the Apache HTTP Server
	Prerequisites
	Basic Apache Configuration
	Authentication Options
	Basic authentication
	Digest authentication

	Authorization Options
	Blanket access control
	Per-directory access control
	Disabling path-based checks

	Protecting network traffic with SSL
	Subversion server SSL certificate configuration
	Subversion client SSL certificate management
	Server certificate
	Client certificate challenge

	Extra Goodies
	Repository browsing
	URL syntax
	Proper MIME type
	Customizing the look
	Listing repositories

	Apache logging
	Write-through proxying
	Configure the servers
	Set up replication
	Caveats

	Other Apache features

	Path-Based Authorization
	High-level Logging
	Supporting Multiple Repository Access Methods

	Chapter 7. Customizing Your Subversion Experience
	Runtime Configuration Area
	Configuration Area Layout
	Configuration and the Windows Registry
	Configuration Options
	Servers
	Config

	Localization
	Understanding Locales
	Subversion's Use of Locales

	Using External Editors
	Using External Differencing and Merge Tools
	External diff
	External diff3
	External merge

	Summary

	Chapter 8. Embedding Subversion
	Layered Library Design
	Repository Layer
	Repository Access Layer
	Client Layer

	Inside the Working Copy Administration Area
	The Entries File
	Pristine Copies and Property Files

	Using the APIs
	The Apache Portable Runtime Library
	Functions and Batons
	URL and Path Requirements
	Using Languages Other Than C and C++
	Code Samples

	Summary

	Chapter 9. Subversion Complete Reference
	svn—Subversion Command-Line Client
	svn Options
	svn Subcommands
	svn add
	svn blame (praise, annotate, ann)
	svn cat
	svn changelist (cl)
	svn checkout (co)
	svn cleanup
	svn commit (ci)
	svn copy (cp)
	svn delete (del, remove, rm)
	svn diff (di)
	svn export
	svn help (h, ?)
	svn import
	svn info
	svn list (ls)
	svn lock
	svn log
	svn merge
	svn mergeinfo
	svn mkdir
	svn move (mv)
	svn propdel (pdel, pd)
	svn propedit (pedit, pe)
	svn propget (pget, pg)
	svn proplist (plist, pl)
	svn propset (pset, ps)
	svn resolve
	svn resolved
	svn revert
	svn status (stat, st)
	svn switch (sw)
	svn unlock
	svn update (up)

	svnadmin—Subversion Repository Administration
	svnadmin Options
	svnadmin Subcommands
	svnadmin crashtest
	svnadmin create
	svnadmin deltify
	svnadmin dump
	svnadmin help (h, ?)
	svnadmin hotcopy
	svnadmin list-dblogs
	svnadmin list-unused-dblogs
	svnadmin load
	svnadmin lslocks
	svnadmin lstxns
	svnadmin pack
	svnadmin recover
	svnadmin rmlocks
	svnadmin rmtxns
	svnadmin setlog
	svnadmin setrevprop
	svnadmin setuuid
	svnadmin upgrade
	svnadmin verify

	svnlook—Subversion Repository Examination
	svnlook Options
	svnlook Subcommands
	svnlook author
	svnlook cat
	svnlook changed
	svnlook date
	svnlook diff
	svnlook dirs-changed
	svnlook help (h, ?)
	svnlook history
	svnlook info
	svnlook lock
	svnlook log
	svnlook propget (pget, pg)
	svnlook proplist (plist, pl)
	svnlook tree
	svnlook uuid
	svnlook youngest

	svnsync—Subversion Repository Mirroring
	svnsync Options
	svnsync Subcommands
	svnsync copy-revprops
	svnsync help
	svnsync info
	svnsync initialize (init)
	svnsync synchronize (sync)

	svnserve—Custom Subversion Server
	svnserve Options

	svndumpfilter—Subversion History Filtering
	svndumpfilter Options
	svndumpfilter Subcommands
	svndumpfilter exclude
	svndumpfilter include
	svndumpfilter help

	svnversion—Subversion Working Copy Version Info
	svnversion

	mod_dav_svn—Subversion Apache HTTP Server Module
	mod_dav_svn Configuration Directives

	mod_authz_svn—Subversion Apache HTTP Authorization Module
	mod_authz_svn Configuration Directives

	Subversion Properties
	Versioned Properties
	Unversioned Properties

	Repository Hooks
	start-commit
	pre-commit
	post-commit
	pre-revprop-change
	post-revprop-change
	pre-lock
	post-lock
	pre-unlock
	post-unlock

	Appendix A. Subversion Quick-Start Guide
	Installing Subversion
	High-Speed Tutorial

	Appendix B. Subversion for CVS Users
	Revision Numbers Are Different Now
	Directory Versions
	More Disconnected Operations
	Distinction Between Status and Update
	Status
	Update

	Branches and Tags
	Metadata Properties
	Conflict Resolution
	Binary Files and Translation
	Versioned Modules
	Authentication
	Converting a Repository from CVS to Subversion

	Appendix C. WebDAV and Autoversioning
	What Is WebDAV?
	Autoversioning
	Client Interoperability
	Standalone WebDAV Applications
	Microsoft Office, Dreamweaver, Photoshop
	cadaver, DAV Explorer

	File-Explorer WebDAV Extensions
	Microsoft Web Folders
	Nautilus, Konqueror

	WebDAV Filesystem Implementation
	WebDrive, NetDrive
	Mac OS X
	Linux davfs2

	Appendix D. Copyright
	Index

